SciELO - Scientific Electronic Library Online

 
vol.14 issue2High Order Recurrent Neural Control for Wind Turbine with a Permanent Magnet Synchronous GeneratorFault-Tolerance and Load-Balance Tradeoff in a Distributed Storage System author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

On-line version ISSN 2007-9737Print version ISSN 1405-5546

Comp. y Sist. vol.14 n.2 Ciudad de México Oct./Dec. 2010

 

Artículos

 

Radial Basis Functions for Phase Unwrapping

 

Funciones radiales de base para desenvolvimiento de fase

 

Jesús Villa Hernández, Ismael de la Rosa Vargas, Enrique de la Rosa Miranda

 

Laboratorio de Procesamiento Digital de Señales Facultad de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas Av. Ramón López Velarde #801, Zacatecas, México, C.P. 98000. E–mail: jvillah@uaz.edu.mx, ismaelrv@yahoo.com, edelarosam@yahoo.com.mx

 

Article received on August 26 2008.
Accepted on March 25 2009.

 

Abstract

An important step in fringe pattern analysis is the so called phase unwrapping. Although this task can be performed easily using path dependent algorithms, most times, however, these algorithms are not robust enough specially in the presence of noise. On the other hand, path independent methods such as least–squares based or regularization based may be little convenient due to programming complexity or time consuming. In this paper we describe an alternative algorithm for phase unwrapping based in the determination of weights to linearly combine a set of radial basis functions (RBFs). As described, our algorithm is fast and can be easily implemented following a simple matrix formulation. Numerical and real experiments with good results show that our method can be applied in many kinds of optical tests.

Keywords: Phase unwrapping, Radial basis functions.

 

Resumen

Un importante paso en el análisis de patrones de franjas es el llamado desenvolvimiento de fase. Aunque esta tarea puede ser realizada fácilmente usando algoritmos dependientes del camino, muchas veces, sin embargo, estos algoritmos no son suficientemente robustos especialmente con la presencia de ruido. Por otro lado, los métodos independientes del camino tales como los basados en mínimos cuadrados o regularización pueden ser poco convenientes debido a la complejidad de programación o al tiempo de procesado. En este artículo describimos un algoritmo alternativo para desenvolvimiento de fase basado en la determinación de pesos para combinar linealmente un conjunto de funciones radiales de base (FRBs). Como se describe, nuestro algoritmo es rápido y puede ser fácilmente implementado siguiendo una formulación matricial simple. Experimentos numéricos y reales con buenos resultados muestran que nuestro método puede ser aplicado a muchos de los tipos de pruebas ópticas.

Palabras clave: Desenvolvimiento de fase, Funciones radiales de base.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Arines J. (2003). Least–squares modal estimation of wrapped phases: application to phase unwrapping. Applied Optics, 42(17), 3373–3378.         [ Links ]

2. Chen J., Chen H., Yang Z. & Ren H., (2007). Weighted least–squares phase unwrapping based on the wavelet transform, SPIE, 27th International Congress on High–Speed Photography and Photonics, Shannxi, China, 6279, 62796S.1–62796S.7.         [ Links ]

3. Ghiglia D. C. & Romero L. A (1994). Robust two dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. Journal of the Optical Society of America A, 11(1), 107–117.         [ Links ]

4. Golub G. H. & Van Loan C. F., Matrix Computations, Baltimore, Maryland: The Johns Hopkins University Press, 1996.         [ Links ]

5. Guerriero L., Nico G., Pasquariello G. & Stramaglia S. (1998). New regularization scheme for phase unwrapping. Applied Optics, 37(14), 3053–3058.         [ Links ]

6. Hunt B. R. (1979). Matrix formulation of the reconstruction of phase values from phase differences. Journal of the Optical Society of America. 69(3), 393–399.         [ Links ]

7. Kim, S.B. & Kim, Y.S. (2005). Least squares phase unwrapping in wavelet domain. Vision, Image and Signal Processing, IEE Proceedings, 152(3), 261–267.         [ Links ]

8. Lu Y., Wang X. & Zhang X. (2007). Weighted least–squares phase unwrapping algorithm based on derivative variance correlation map. Optik–International Journal for Light and Electron Optics, 118(2), 62–66.         [ Links ]

9. Lyuboshenko V., Mâtre H., & Maruani A. (2002). Least–Mean–Squares Phase Unwrapping by Use of an Incomplete Set of Residue Branch Cuts, Applied Optics, 41(11), 2129–2148.         [ Links ]

10. Malacara D., Servín M., & Malacara Z. (1998). Interferogram analysis for optical testing. New York: Marcel–Dekker.         [ Links ]

11. Montoya–Hernández M., Servín M., Malacara–Hernández D., & Paez G. (1999). Wavefront fitting using gaussian functions, Optics Communications, 163(4–6), 259–269.         [ Links ]

12. Rivera M. & Marroquin J. L. (2004). Half–quadratic cost functions for phase unwrapping. Optics Letters, 29(5), 504–506.         [ Links ]

13. Stróbel B. (1996). Processing of interferometric phase maps as complex–valued phasor images. Applied Optics, 35(13), 2192–2198.         [ Links ]

14. Takeda M., H. Ina, & Kobayashi S. (1982). Fourier transform method of fringe pattern analysis for computer based topography and interferometry, Journal of the Optical Society of America A, 72(1), 156–160.         [ Links ]

15. Villa Jesús, De la Rosa Ismael, Miramontes Gerardo, & Quiroga Juan Antonio (2005). Phase recovery from a single fringe pattern using an orientational vector field regularized estimator, Journal of the Optical Society of America A, 22(12), 2766–2773.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License