SciELO - Scientific Electronic Library Online

 
vol.25 issue1Identification of defects and risks in trees of San Juan de Aragon Forest, Mexico CityOptimization of a mature cotyledons-based in vitro culture system for embryogenic-callus induction in carob (Ceratonia siliqua L.) author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista Chapingo serie ciencias forestales y del ambiente

On-line version ISSN 2007-4018Print version ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.25 n.1 Chapingo Jan./Apr. 2019  Epub Feb 15, 2021

https://doi.org/10.5154/r.rchscfa.2018.06.050 

Scientific article

Compatible taper, volume, green weight, biomass and carbon concentration system for Quercus sideroxyla Bonpl

Gerónimo Quiñonez-Barraza1  * 

Dehai Zhao2 

Héctor M. de los Santos-Posadas3 

Wenceslao Santiago-García4 

Juan C. Tamarit-Urías5 

Juan A. Nájera-Luna6 

1Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Campo Experimental Valle del Guadiana. Carretera Durango-Mezquital km 4.5. C. P. 34170. Durango, Durango, México.

2The University of Georgia, Warnell School of Forestry & Natural Resources. 180 E Green Street, Athens, Georgia, 30606, USA.

3Colegio de Postgraduados, Campus Montecillo, Postgrado en Ciencias Forestales. Carretera México Texcoco km 36.5. C. P. 56230. Texcoco, Estado de México, México.

4Universidad de la Sierra Juárez, Ciencias Forestales. Avenida Universidad s/n. C. P. 68725. Ixtlán de Juárez, Oaxaca, México.

5 Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Campo Experimental San Martinito. C. P. 74100. Tlahuapan, Puebla, México.

6Instituto Tecnológico de El Salto, División de Estudios de Posgrado e Investigación. Mesa del Tecnológico s/n. C. P. 34942. El Salto, Pueblo Nuevo. Durango, México.


Abstract

Introduction:

Estimation of total and merchantable tree volume, as well as of biomass and carbon, implies the generation of biometric tools essential in forest management and planning.

Objectives:

To fit a compatible taper, volume, green weight, dry biomass and carbon concentration system for Quercus sideroxyla Bonpl. species using wood density.

Materials and methods:

A database of 522 diameter-height measurements, obtained from 37 trees, was used in the fitting equations. The compatible system (CS) was integrated by 34 equations, which were simultaneously fitted by generalized nonlinear least squares. Taper and volume were the base variables for estimating green weight, dry biomass and carbon concentration.

Results and discusión:

All equations were compatible with the stem volume equation, and the merchantable equations with the taper and merchantable volume equations. The fit statistics showed the efficiency of the equations in global terms and by relative height classes.

Conclusions:

The CS has the property of estimating taper, merchantable volume, green weight, dry biomass and carbon concentration at upper-height and by components (stem, total tree and branches).

Keywords: merchantable volume; stem volume; branch volume; aboveground biomass; green weight

Resumen

Introducción:

La estimación de volumen total y comercial de árboles, así como la de biomasa y carbono, implica la generación de herramientas biométricas esenciales en el manejo y planeación forestal.

Objetivos:

Ajustar un sistema compatible (SC) de ahusamiento, volumen, peso verde, biomasa seca y concentración de carbono para la especie Quercus sideroxyla Bonpl., con el uso de la densidad de la madera.

Materiales y métodos:

Una base de datos de 522 pares de diámetro-altura, obtenida de 37 árboles, se utilizó en el ajuste. El SC se conformó de 34 ecuaciones ajustadas simultáneamente por mínimos cuadrados generalizados no lineales. El ahusamiento y volumen fueron las variables base para la estimación del peso verde, biomasa seca y concentración de carbono.

Resultados y discusión:

Todas las ecuaciones fueron compatibles con la ecuación de volumen de fuste, y las ecuaciones comerciales, con los parámetros del ahusamiento y volumen comercial. Los estadísticos de ajuste mostraron la eficiencia de las ecuaciones en términos globales y por clases de altura relativa.

Conclusiones:

El SC posee la cualidad de estimar el ahusamiento, volumen comercial, peso verde, biomasa seca y concentración de carbono a una altura comercial y por componentes (fuste, total árbol y ramas).

Palabras clave: volumen comercial; volumen de fuste; volumen de ramas; biomasa aérea; peso verde

Introduction

A volume estimation system should be compatible; i.e., the stem volume obtained through the integration of a taper model should be equal to the volume predicted by the volume equation (Özçelik & Cao, 2017). Based on mass theory, an alternative for predicting sectional stem dry weight, at a given diameter at breast height (dbh) or total height, can be based on the integration of the taper equation and a function of wood density (Parresol & Thomas, 1989). Tree profile, volume and biomass are essential elements in forest management planning. Traditionally, these elements have been estimated separately, but the inclusion of wood density allows accurate simultaneous estimates (Parresol, 1999; Parresol & Thomas, 1989; Parresol & Thomas, 1996). Wood density can be modeled as a function of merchantable height or assumed to be constant, to determine the green weight or biomass of stems at any desired height (Brooks, Jiang, & Zhang, 2007; Jordan, Souter, Parresol, & Daniels, 2006; Valenzuela et al., 2018). The addition of wood density acquires relevance in the conversion of timber stocks to biomass and, particularly, for the estimation of carbon content (Ordóñez-Díaz et al., 2015).

Total biomass or by tree components (stem, bark, branches or foliage) can be estimated directly by equations with dbh and height data from forest inventories (Vargas-Larreta et al., 2017; Zhao, Kane, Markewitz, Teskey, & Clutter, 2015). On the other hand, when volume estimates are available, they can be converted to green weight or biomass through ratio equations (Zhao, Kane, Teskey, & Markewitz, 2016), or the corresponding taper and merchantable volume equations, to estimate variable biomass (Valenzuela et al., 2018). Indirect biomass estimates obtained from volume allow extensive transformation of volume data into biomass data (Ver Planck & MacFarlane, 2015). The demand for biomass equations has increased due to the need to improve estimation of forest carbon stocks and to quantify the distribution of wood biomass within trees (Ver Planck & MacFarlane, 2015). Quantification of the carbon concentration by components, and specifically in the branches, has taken on importance for bioenergy or CO2 quantification (Corral-Rivas et al., 2017).

Trees, without considering the roots, are commonly separated into four components: stump, main stem, stem bark and live crown, which are used to refer to volume, green weight, biomass (Parresol, 2001) and, frequently, carbon. According to Ver Planck and MacFarlane (2015), there are three main procedures for estimating biomass: prediction through predictor variables, (2) prediction from volume, or (3) simultaneous estimation of both biomass and volume components.

Carbon is an important element in the forest wood value chain and represents an essential product on the global market (Zakrzewski & Duchesne, 2012). Quantifying carbon sources and sinks and their spatial distribution and dynamics over time is a global research focus (Zakrzewski & Duchesne, 2012). If taper, green weight and carbon concentration are integrated into the simultaneous volume and biomass estimates, a compatible system for the simultaneous estimation of the five variables can be considered. Therefore, the objective of this study was to develop a compatible taper, volume, green weight, biomass and carbon concentration system for Quercus sideroxyla Bonpl. in Durango, Mexico.

Materials and methods

Study area and experimental data

The study area was the ejido San Diego de Tezains, located in Forest Management Unit 1005, Santiago Papasquiaro y Anexos, in the state of Durango, between the geographic coordinates 24° 48’ 16.98” - 25° 13’ 47.25” N and 105° 53’ 09.81” - 106° 12’ 52.58” W. The total area is 60 801.92 ha, with the forest covering 26 039.02 ha (Quiñonez-Barraza, De los Santos-Posadas, Álvarez-González, & Velázquez-Martínez, 2014). The predominant climate is temperate semi-cold humid -C(E)(w2)(x’) - with a mean annual temperature of 5 to 12 °C and average annual rainfall of 840 mm (García, 2004).

Quercus sideroxyla is a commercial timber species distributed in mixed-species stands in which the genus Pinus is dominant. The database was integrated with 37 trees (522 merchantable diameter-height measurements) distributed in stands with forest management and collected in 2006 to generate the local biometric system. Tree selection considered stem straightness, a regular live crown, dominance and distribution of diameters and heights. The trees were felled and the diameters and heights on the stem were measured. Measurements on the stem were recorded considering the taper at the height of the dbh (four measurements) and then sections of 2 m to tree top. Merchantable branches (basal diameter ≥ 2 cm) were measured at variable lengths. The volume of the bolts and stem was estimated using the overlapping bolts method proposed by Bailey (1995), while branch volume was estimated using the Smalian and cone formulas (Quiñonez-Barraza et al., 2014). Figure 1 shows the dispersion of relative outside-bark and inside-bark volume with respect to relative height, and Table 1 presents the variables used.

Figure 1 Relative volume (Vm/Vs) by relative height (h/H) data, outside-bark (left) and inside-bark (right). Vm: merchantable volume, Vs: stem volume, h: upper-height, H: total height. 

Table 1 Database used in fitting of the compatible taper, volume, green weight, biomass and carbon concentration system for Quercus sideroxyla. 

Variable outside-bark inside-bark
Minimum Maximum Mean SD Minimum Maximum Mean SD
d (cm) 0.000 67.000 20.314 13.435 0.000 60.000 16.513 11.951
D (cm) 11.000 48.000 27.090 10.170 9.000 42.000 23.008 8.806
H (m) 6.600 21.000 12.867 4.092 - - - -
h (m) 0.000 21.000 5.447 4.947 - - - -
hs (m) 0.070 0.340 0.181 0.064 - - - -
Vs (m3) 0.041 2.054 0.501 0.494 0.025 1.579 0.330 0.345
Vm (m3) 0.000 2.054 0.310 0.410 0.000 1.579 0.210 0.285
Vb (m3) 0.047 2.440 0.586 0.584 0.032 1.783 0.388 0.395
Vt (m3) 0.003 0.387 0.085 0.098 0.002 0.245 0.058 0.065
Wsg (kg) 57.839 2 895.483 706.936 696.835 35.622 2226.204 465.297 486.070
Wmg (kg) 0.000 2 895.483 437.177 578.471 0.000 2226.204 296.073 402.258
Wtg (kg) 66.286 3 440.598 826.095 823.941 44.592 2513.792 547.436 557.510
Wbg (kg) 3.983 545.115 119.158 138.565 3.278 344.913 82.139 91.527
Wsd (kg) 25.474 1 275.244 311.353 306.904 15.689 980.477 204.929 214.078
Wmd (kg) 0.000 1 275.244 192.544 254.773 0.000 980.477 130.398 177.165
Wtd (kg) 29.194 1 515.327 363.833 362.885 19.639 1 107.138 241.105 245.542
Wbd (kg) 1.754 240.083 52.480 61.027 1.444 151.908 36.176 40.311
Cs (kg) 12.737 637.622 155.676 153.452 7.844 490.239 102.464 107.039
Cm (kg) 0.000 637.622 96.272 127.387 0.000 490.239 65.199 88.582
Ct (kg) 14.597 757.664 181.917 181.442 9.820 553.569 120.552 122.771
Cb (kg) 0.877 120.041 26.240 30.514 0.722 75.954 18.088 20.155

SD = standard deviation of the mean, d = taper, D = diameter at breast height (dbh), H = total height, h = upper-height, hs = stump height, Vs = stem volume, Vm = merchantable volume, Vb = branch volume, Vt = total tree volume, Wsg = stem green weight, Wmg = merchantable green weight, Wtg = total tree green weight, Wbg = branch green weight, Wsd = stem biomass, Wmd = merchantable biomass, Wtd = total tree biomass, Wbd = branch biomass, Cs = stem carbon concentration, Cm = merchantable carbon concentration, Ct = total tree carbon concentration, Cb = branch carbon concentration.

Description of the Quercus sideroxyla compatible system

Some of the volume and biomass equations, based on wood density, are founded on the approach proposed by Parresol and Thomas (1989), which consists of determining dry weight or dry biomass as a function that multiplies volume by wood density and can be obtained as:

w=hlhu0fhρh,Yyh

where,

w

weight of stem section between lower (hl) and upper (hu) height for total height (H)

f(h)

taper equation in the cross-sectional area of the stem

ρ(h, Y)

function of density in the cross-sectional area (Y) as a dimension of tree height

In practice, the double-integral model is simplified to one integral because the relative density is usually constant in the Y dimension. Therefore, the weight of bolts or stems can be obtained according to what is expressed by Parresol and Thomas (1996):

w=Hhlhuρhfh  h

Based on the procedure described by Zhang, Borders, and Bailey (2002), the merchantable volume equation is integrated with the density function ( w=h0hρhV ). According to Brooks, Jiang, and Zhang (2007) and Jiang and Brooks (2008), if wood density is assumed to be constant ( ρh=ρ0 ) and if an existing taper function is used, the equation for estimating weight can be expressed as:

w=k ρ0hlhufh h

If a taper function is used that considers a compatible merchantable volume, the merchantable weight (W m , kg) would be given by multiplying the basic density of the wood (ρ 0 , kg·m-3) and the corresponding merchantable volume equation (V m , m3) (Brooks, Jiang, & Clark III, 2007). This can be expressed as:

Wm=ρ0 fVm

Green density (ρ 0g ) and basic density (ρ 0d ) were used to model green weight (W g ) and dry biomass (W d ), respectively. These density concepts have been used in biomass studies for forest species in Mexico and North America (Miles & Smith, 2009; Nájera et al., 2007; Návar, 2009; Ordóñez-Díaz et al., 2015; Pérez, Dávalos-Sotelo, Limón, & Quintanar, 2015; Pérez-Olvera & Dávalos-Sotelo, 2008). According to the average values reported in these studies and considering the proximity to the study area, the value used for ρ 0g was 1 410 kg·m-3, and for ρ 0d , 621 kg·m-3, and 49 % of the ρ 0d was used for carbon concentration (ρ 0c ) of 304.29 kg·m-3 as a reasonable amount for the species Q. sideroxyla (Aquino-Ramírez, Velázquez-Martínez, Echevers-Barra, & Castellanos-Bolaños, 2018; Návar, 2009; Silva-Arredondo & Návar-Cháidez, 2009; Vargas-Larreta et al., 2017).

In this study, the compatible taper and merchantable volume system reported by Fang, Borders, and Bailey (2000) was used, and green weight, biomass, and carbon concentration were included. The system is integrated by the taper and merchantable volume equations (Equations 1 and 2, respectively):

dij(ob)=c1HiK-β1β11-hijHiK-RRA1I1+I2A2I20.5+εij

Vmijob, Wmgij(ob),Wmdij(ob),Cmij(ob)=c12Hkβ1β1t0+I1+I2β2-β1t1+I2β3-β2A1t2-R1-hijHikRA1I1+I2A2I2

with the following expressions,

c1=ρ0iα0iDi(ob)α1Hiα2-Kβ1β1t0-t1+β2t1-A1t2+β3A1t20.5

t0=1-p0Kβ1 ; p0=hsiHi ; t1=1-ϑ1Kβ1 ; t2=1-ϑ2Kβ2

A1=1-ϑ1β2-β1Kβ1β2 ; A2=1-ϑ2β3-β2Kβ2β3 ; R=β11-I1+I2β2I1β3I2

I1={1   si  ϑ1 hijHi ϑ2 0   otherwise

I2={1              si  ϑ2<hijHi <1 0   otherwise

ϑ1=hij1Hi ; ϑ2=hij2Hi

where,

h ij

upper-height j of tree i (m)

d ij(ob)

diameter j of tree i at height h ij (cm)

Vmijob
,
Wmgij(ob)
,
Wmdij(cc)
and
Cmij(ob)

merchantable outside-bark volume (m3) j, outside-bark green weight (kg) j, outside-bark biomass (kg) and outside-bark carbon concentration (kg) j, respectively, of tree i at height h ij

H i

total height of tree i (m)

D i(ob)

outside-bark dbh of tree i (cm)

h s

stump height of tree i (m)

α i

total volume parameters (i = 0, 1, 2)

β i

taper and merchantable volume parameters (i = 1, 2, 3)

ϑ1
and
ϑ2

inflection point parameters

ε ij

error j in tree i

ρ 0i

density value for W sg(ob) , W sd(ob) and C s(ob) , which were assumed constants, which did not apply for V s(ob) in the stem volume equation

The CS included taper (d), stem volume (V s ), merchantable volume (V m ), total tree volume (V t ) and branch volume (V b ) equations. These components were the basis of the CS and defined the set of equations for W g , W d and C.

The stem volume equation was the one reported by Schumacher (1933) and is given in Equation 3, the total tree volume equation (V s + V b ) is given in Equation 4 and that of branch volume in Equation 5, for all variables:

Vs(ob), Wsg(ob), Wsd(ob), Cs(ob)=ρ0iα0iDi(ob)α1Hiα2

Vt(ob), Wtg(ob), Wtd(ob), Ct(ob)=ρ1iδ0iDi(ob)δ1Hiδ2

Vb(ob), Wbg(ob), Wbd(ob), Cb(ob)=ρ1iδ0iDi(ob)δ1Hiδ2-ρ0iα0iDi(ob)α1Hiα2

where,

V s(ob , V t(ob) and V b(ob)

stem outside-bark volume, total tree outside-bark volume and branches outside-bark volume (m3), respectively

W sg(ob), W tg(ob) and W bg(ob)

green stem outside-bark weight, green total tree outside-bark weight and green branches outside-bark weight (kg), respectively.

W sd(ob) , W td(ob) and W bd(ob)

stem outside-bark biomass, total tree outside-bark biomass and branches outside-bark biomass (kg), respectively

C s(ob) , C t(ob) and C b(ob)

stem outside-bark carbon concentration, total tree outside-bark carbon concentration and branches outside-bark carbon concentration (kg), respectively.

(ob)

outside-bark components

ρ 0i

density corresponding to W sg(ob) , W sd(ob) and C s(ob) , which does not apply for V s(ob) in the stem volume equation

α i (i = 1, 2)

common parameters for V s(ob) , W sg(ob) , W sd(ob) and C s(ob)

α 0i (i = 1, 2, 3, 4)

specific parameters for each equation (i = 1 for V s(ob) , i = 2 for W sg(ob) , i = 3 for W sd(ob) and i = 4 for C s(ob) ), which were scaled with the known density parameters (ρ 0i ). The same procedure in δ i and δ 0i for total tree

The outside-bark equations were modeled inside-bark with the addition of a proportion parameter, as follows:

dij(ib)=θ0fdij(ob)

Vmij (ib),Wmijg(ib), Wmijd(ib), Cmij(ib)=θ1ifVmij(ob)

Vs(ib), Wsg(ib), Wsd(ib), Cs(ib)=θ2iρoiα0iDi(ob)α1Hiα2

Vt(ib), Wtg(ib), Wtd(ib), Ct(ib)=θ3iρoiδ0iDi(ob)δ1iHiδ2i

Vb(ib), Wbg(ib), Wbd(ib), Cb(ib)=θ4iρoiδ0iDi(ib)δ1iHiδ2i-ρoiα0iDi(ob)α1Hiα2

where,

(ib)

inside-bark component

θ 0

parameter representing the taper equation

f(d ij(ob) )

taper function

θ 1i

parameters representing merchantable volume, green weight, dry biomass and carbon concentration

fVmij(ob)

merchantable volume function

θ 2i , θ 3i y θ 4i

parameters representing the stem inside-bark volume, total tree inside-bark volume and branch inside-bark volume equations (i = 1, 2, 3, 4)

Fitting of the compatible system

The CS was simultaneously fitted by generalized nonlinear least squares (GNLS) of the SAS® MODEL procedure (SAS Institute Inc., 2015). In addition, a continuous autoregressive error structure (CAR2) was included to correct the autocorrelation in the taper, as well as a power function [ σi2=Di2Hi ] to correct the heteroscedasticity in the merchantable stem, total tree and branch equations (Özçelik & Crecente-Campo, 2016; Quiñonez-Barraza et al., 2014). To make the fitting of the taper, merchantable volume, merchantable green weight, merchantable biomass and merchantable carbon concentration equations compatible with those of volume, green weight, biomass and carbon concentration for the stem, total tree and branches, both outside-and inside-bark equations, a weighting variable (Pn) was used, which implied the division of 1 by the number of heights measured in the stem of each tree (ni) (Pn = 1 / ni). The weighted function was programmed for the stem as resid. Vs, Wsg, Wsd, Cs=resid. Vs, Wsg, Wsd, CsPn in the fitting procedure, as well as for the total tree and branches components.

Fitting statistics

Goodness-of-fit of the CS was evaluated with global statistics such as root mean square error (RMSE), adjusted coefficient of determination (R2), mean Bias and Akaike information criterion (AIC). The standard error of estimate (SEE), R2 and bias were used per relative height classes for the taper and merchantable equations.

Results and discussion

The 34 CS equations were simultaneously fitted and the 36 parameters were different from zero at a significance level of 1 % (p < 0.01). The fitting guaranteed the compatibility of the equations, and the parameter errors were simultaneously minimized (Brooks, Jiang, & Clark III, 2007; Jiang & Brooks, 2008). The base parameters of the taper equation and the merchantable stem and total tree volumes defined the global and specific parameters for the rest of the variables, both outside-and inside-bark components (Table 2). The use of green density, basic density and percentage of biomass for carbon concentration allowed modeling the five variables in the stem, total tree and branch components. This procedure was similar to that proposed by Parresol and Thomas (1989), but assuming constant density along the tree stem. Brooks, Jiang, and Zhang (2007), and Ver Planck and MacFarlane (2015) found similar results in predicting biomass with a merchantable volume function.

Table 2 Estimate parameters of compatible system equations for taper, volume, green weight, biomass and carbon concentration of Quercus sideroxyla. 

Parameter Estimate SE t p Parameter Estimate SE t p
α01(Vsob)
0.00003 7.1×10−6 39.81 <0.0001
α04(Csob)
0.00963 0.00024 39.82 <0.0001
α1(Vsob)
2.17879 0.00959 227.18 <0.0001
θ0(dib)
0.82130 0.00672 122.22 <0.0001
α2(Vsob)
0.85272 0.00902 94.50 <0.0001
θ11(Vmib)
0.70054 0.00801 87.45 <0.0001
β1
0.00001 3.6×10−6 18.20 <0.0001
θ21(Vsib)
0.72230 0.00685 105.47 <0.0001
β2
0.00002 1.4×10−5 12.50 <0.0001
θ31(Vtib)
0.68538 0.00652 105.13 <0.0001
β3
0.00003 4.7×10−6 66.37 <0.0001
θ41(Vbib)
0.52499 0.01700 30.90 <0.0001
ϑ1
0.04643 0.00382 12.14 <0.0001
θ12(Wmgib)
0.65491 0.00746 87.84 <0.0001
ϑ2
0.18090 0.01890 9.55 <0.0001
θ22(Wsgib)
0.66609 0.00611 108.93 <0.0001
ϱ1
0.68358 0.05860 11.67 <0.0001
θ32(Wtgib)
0.66270 0.00620 106.96 <0.0001
ϱ2
0.20490 0.03360 6.10 <0.0001
θ42(Wbgib)
0.64401 0.02130 30.29 <0.0001
δ01(Vtob)
0.00004 0.00001 37.48 <0.0001
θ13(Wmdib)
0.65491 0.00746 87.84 <0.0001
δ1(Vtob)
2.20564 0.01020 216.06 <0.0001
θ23(Wsdib)
0.66609 0.00611 108.94 <0.0001
δ2(Vtob)
0.80209 0.00924 86.84 <0.0001
θ33(Wtdib)
0.66270 0.00620 106.96 <0.0001
δ02(Wtgob)
0.05334 0.00142 37.53 <0.0001
θ43(Wbdib)
0.64401 0.02130 30.29 <0.0001
δ03(Wtdob)
0.02349 0.00063 37.53 <0.0001
θ14(Cmib)
0.65226 0.00739 88.23 <0.0001
δ04(Ctob)
0.01178 0.00031 37.51 <0.0001
θ24(Csib)
0.66221 0.00605 109.39 <0.0001
α02(Wsgob)
0.04346 0.00109 39.89 <0.0001
θ34(Ctib)
0.66052 0.00616 107.17 <0.0001
α03(Wsdob)
0.01914 0.00048 39.89 <0.0001
θ44(Cbib)
0.65157 0.02160 30.20 <0.0001

SE = standard error; t = Student's t-distribution value; p = value of the probability associated with the t value. d = taper, Vs = stem volume, Vm = merchantable volume, Vt = total tree volume, Vb = branch volume, Wsg = stem green weight, Wmg = merchantable green weight, Wtg = total tree green weight, Wbg = branch green weight, Wsd = stem biomass, Wmd = merchantable biomass, Wtd = total tree biomass, Wbd = branch biomass, Cs = stem carbon concentration, Cm = merchantable carbon concentration, Ct = total tree carbon concentration, Cb = branch carbon concentration, ob = outside-bark, ib = inside-bark.

The lowest inflection point occurs at 4.64 % of total height, while the highest inflection point occurs at 18.09 % (Table 2). The normalized form factors of the three segments were 0.086, 0.229 and 0.407 (Fang et al., 2000), suggesting a strong taper below 20 % relative height, while the stem has a better form after that height; this behavior is common in this species. Vargas-Larreta et al. (2017) fitted a regional model for the species, in which they suggest form factors similar to those found.

The fitting statistics showed the accuracy of the CS equations, which are presented in Table 3. The lowest R2 values were found for the branch component: 0.742 outside-bark and 0.668 for inside-bark components; however, these statistics are considered efficient, if compared with the low values reported by Simental-Cano et al. (2017) for different species, among them Q. sideroxyla (R2 = 0.48). The improved fitting is due to the fact that the merchantable branch volume considered all the merchantable branches for each tree and not only the branches with a basal diameter greater than 5 cm, as considered by Vargas-Larreta et al. (2017) in developing a forest biometric system for some forests in Mexico. In addition, volume, green weight, biomass and carbon concentration estimation can be made at desired upper-heights and diameters, which involves an important gain compared to models based on allometric relationships and expansion factors such as those of Návar (2009), and Silva-Arredondo and Návar-Cháidez (2009). In the other CS equations, the lowest R2 values were 0.959 and 0.923 for outside-bark and inside-bark diameters, respectively. Because the outside- and inside-bark components for green weight, biomass and carbon concentration equations were scaled from the merchantable volume of the stem, total tree and branches, the R2 values were the same for the sets of equations, but those of RMSE, AIC and Bias were different.

Table 3 Fitting statistics of the compatible system equation components of taper, volume, green weight, biomass and carbon concentration of Quercus sideroxyla. 

Variable Outside-bark Inside-bark
np RMSE R2 AIC Bias np RMSE R2 AIC Bias
d (cm) 10 2.708 0.959 1052 0.167 11 3.320 0.923 1266 0.099
Vm (m3) 8 0.065 0.975 -2835 0.032 9 0.072 0.936 -2733 0.013
Vs (m3) 3 0.023 0.965 -3955 0.003 4 0.022 0.931 -3992 0.000
Vt (m3) 3 0.026 0.967 -3821 0.002 4 0.026 0.926 -3810 0.001
Vb (m3) 6 0.014 0.742 -4458 -0.001 7 0.012 0.668 -4599 0.000
Wmg (kg) 8 75.316 0.983 4524 12.683 9 101.587 0.936 4837 18.067
Wsg (kg) 3 25.976 0.977 3405 1.076 4 30.620 0.931 3578 0.503
Wtg (kg) 3 34.938 0.970 3715 0.967 4 36.448 0.926 3760 0.983
Wbg (kg) 6 17.288 0.742 2983 -0.109 7 17.042 0.668 2969 0.475
Wmd (kg) 8 33.171 0.983 3668 5.586 9 44.741 0.936 3981 7.957
Wsd (kg) 3 11.440 0.977 2549 0.474 4 13.486 0.931 2722 0.221
Wtd (kg) 3 15.387 0.970 2859 0.426 4 16.053 0.926 2904 0.433
Wbd (kg) 6 7.614 0.742 2127 -0.048 7 7.506 0.668 2113 0.209
Cm (kg) 8 16.655 0.983 2948 2.245 9 22.343 0.937 3256 3.869
Cs (kg) 3 5.728 0.977 1827 0.182 4 6.743 0.931 1998 0.111
Ct (kg) 3 7.696 0.970 2136 0.176 4 8.026 0.926 2180 0.216
Cb (kg) 6 3.809 0.742 1404 -0.005 7 3.752 0.668 1390 0.104

np = number of parameters in the equation, RMSE = root mean square error, R2 = adjusted coefficient of determination, AIC = Akaike information criterion, d = taper, Vm = merchantable volume, Vs = stem volume, Vt = total tree volume, Vb = branch volume, Wmg = merchantable green weight, Wsg = stem green weight, Wtg = total tree green weight, Wbg = branch green weight, Wmd = merchantable biomass, Wsd = stem biomass, Wtd = total tree biomass, Wbd = branch biomass, Cm = merchantable carbon concentration, Cs = stem carbon concentration, Ct = total tree carbon concentration, Cb = branch carbon concentration.

The variation in α^0i allowed us to intrinsically model the parameters of ρ0i and ρ1i in the system equations. For green weight, it was found that ρ01=α^02α^01=1 552.00 and ρ11=δ^02δ^01=1 441.49 ; in biomass ρ02=α^03α^01=683.54 and  ρ12=δ^03δ^01=634.86 , while for carbon concentration ρ03=α^04α^01=343.79 and ρ13=δ^04δ^01=318.49 , in the stem and total tree components, respectively. These values are comparable to the density values corresponding to each variable, but depend on the values of α^1 and α^2 for the stem volume, and δ^1 and δ^2 for total tree volume.

The fitting statistics by relative height classes are shown in Table 4. The 10 % class considered merchantable measurements from the base and around the dbh. The lowest efficiency was found in the extreme classes, i.e., at stump height and in the 90 % class. The latter is associated with the number of observations (16) and CS restrictions on top diameter.

Table 4 Fitting statistics for the relative height classes of the compatible system equation components of taper, volume, green weight, biomass and carbon concentration of Quercus sideroxyla. 

h/H (%) n outside-bark inside-bark
d (cm) Vm (m3) Wmg (kg) Wmd (kg) Cm (kg) d (cm) Vm (m3) Wmg (kg) Wmd (kg) Cm (kg)
SEE
10 178 3.632 0.028 38.412 16.919 8.449 4.106 0.024 34.167 15.076 7.519
20 26 2.897 0.022 47.410 20.817 10.854 3.511 0.038 54.310 23.889 11.966
30 29 2.365 0.029 65.414 28.714 15.024 3.116 0.043 60.347 26.612 13.284
40 36 2.096 0.059 68.870 30.295 15.434 3.667 0.080 109.573 48.459 24.091
50 50 2.101 0.055 64.113 28.222 14.236 2.800 0.068 94.284 41.591 20.750
60 49 1.899 0.071 77.653 34.198 17.147 2.434 0.078 106.835 47.251 23.489
70 57 2.044 0.081 83.061 36.597 18.230 2.829 0.098 137.765 60.692 30.335
80 43 1.602 0.100 102.587 45.197 22.538 2.347 0.116 162.924 71.748 35.881
90 16 2.151 0.163 172.223 75.886 37.769 2.685 0.161 220.525 97.663 48.459
100 38 0.528 0.088 109.245 48.095 24.207 0.683 0.073 116.337 43.450 21.788
R2
10 178 0.903 0.788 0.803 0.803 0.804 0.843 0.729 0.734 0.733 0.735
20 26 0.911 0.985 0.967 0.967 0.964 0.822 0.915 0.914 0.914 0.914
30 29 0.937 0.990 0.973 0.974 0.971 0.845 0.955 0.956 0.956 0.956
40 36 0.949 0.980 0.986 0.986 0.986 0.805 0.934 0.937 0.936 0.937
50 50 0.900 0.971 0.980 0.980 0.980 0.742 0.913 0.915 0.914 0.915
60 49 0.916 0.972 0.983 0.983 0.983 0.771 0.935 0.938 0.938 0.939
70 57 0.875 0.967 0.983 0.983 0.983 0.650 0.900 0.900 0.900 0.900
80 43 0.841 0.961 0.979 0.979 0.979 0.555 0.893 0.894 0.894 0.894
90 16 0.484 0.938 0.965 0.965 0.965 0.140 0.895 0.901 0.900 0.902
100 38 0.784 0.963 0.971 0.971 0.970 0.508 0.946 0.930 0.950 0.949
Bias
10 178 -0.227 0.020 24.563 10.827 5.353 1.012 0.017 24.055 10.628 5.291
20 26 0.654 0.011 -11.227 -4.881 -2.880 -0.102 0.008 8.678 4.065 1.864
30 29 -0.082 0.012 -19.217 -8.377 -4.784 -0.403 0.017 19.763 9.034 4.288
40 36 0.864 0.030 -3.137 -1.273 -1.388 -0.007 0.020 23.860 10.925 5.173
50 50 0.394 0.030 6.312 2.867 0.834 -0.821 0.015 17.665 8.112 3.825
60 49 0.513 0.037 7.235 3.294 0.906 -0.454 0.023 27.036 12.318 5.874
70 57 0.192 0.047 15.051 6.751 2.531 -0.788 0.007 3.904 2.187 0.769
80 43 0.191 0.065 21.589 9.675 3.689 -0.583 0.002 -5.073 -1.598 -1.241
90 16 0.557 0.089 9.189 4.327 0.234 0.421 0.049 55.966 25.717 12.117
100 38 0.086 0.039 4.847 2.253 0.308 0.111 -0.019 9.452 0.689 0.538

h/H = relative height; n = number of observations per relative height classes; SEE = standard error of estimate, R2 = adjusted coefficient of determination, d = taper, Vm = merchantable volume, Wmg = merchantable green weight, Wmd = merchantable biomass, Cm = merchantable carbon concentration.

The residuals per relative height classes (h/H) and total height (H), for taper and volume, are presented in box and whisker plots in Figure 2, for green weight in Figure 3, for biomass in Figure 4 and for carbon concentration in Figure 5. The CS modeled biomass and carbon concentration with high statistical precision, which will allow quantification of these variables for complete trees, as well as merchantable heights and inclusion in forest inventories. Similar patterns have been reported by Fang et al. (2000) for volume and taper and by Kozak and Smith (1993) for taper in standard error of estimate and average Bias.

Figure 2 Dispersion of the residuals of taper (d) and merchantable volume (Vm) with respect to relative height (h/H), and of stem (Vs), total tree (Vt) and branch (Vb) volumes with respect to total height (H), outside-bark (ob) and inside-bark (ib).  

Figure 3  Dispersion of the residuals of merchantable green weight (Wmg) with respect to relative height (h/H), and of stem (Wsg), total tree (Wtg) and branch (Wbg) green weight with respect to total height (H), outside-bark (ob) and inside-bark (ib). 

Figure 4 Dispersion of the residuals of merchantable biomass (Wmd) with respect to relative height (h/H), and of stem (Wsd), total tree (Wtd) and branch (Wbd) biomass with respect to total height (H), outside-bark (ob) and inside-bark (ib).  

Figure 5. Dispersion of the residuals of merchantable carbon concentration (Cm) with respect to relative height (h/H), and of stem (Cs), total tree (Ct) and branch (Cb) carbon concentrations with respect to total height (H), outside bark (ob) and inside bark (ib).  

Table 5 shows the variances-covariances and correlations matrix for some of the CS variables. Because the green weight, biomass and carbon concentration were scaled from the volume, it was logical that the residuals were correlated. The correlation coefficient of the W md and W mg errors was 1.00, as it was also for C m with W mg and W md ; this pattern was observed for the residuals outside- and inside-bark. A similar trend was found for the stem green weight, biomass and carbon concentration equations. This implies that as the residuals of one equation vary, they also do systematically for the other equation. This correlation is not important, as it is possible that the stem profile predictions will improve if the bolt correlation is reasonably traced (Fang et al., 2000). The taper-merchantable volume correlation (0.13 and 0.02 outside- and inside-bark, respectively) presented the same pattern for green weight, biomass and carbon concentration. In addition, the data comply with the factor pointed out by Williams and Reich (1997); that is, they were representative of the study area and not taken in the cutting areas, which are considered mature trees.

Table 5 Variances-covariances and correlations matrix of the residuals of the compatible taper, volume, green weight, biomass and carbon concentration system of Quercus sideroxyla. 

Variables outside-bark inside-bark
d Vm Wmg Wmd Cm D Vm Wmg Wmd Cm
outside-bark d 7.17 0.02 11.76 5.18 2.33 4.40 0.01 3.64 1.60 0.75
Vm 0.13 0.01 3.40 1.50 0.73 0.03 0.01 2.52 1.11 0.55
Wmg 0.06 0.82 5 402 2 379 1 199 45.93 1.99 3 309 1 457 730.91
Wmd 0.06 0.82 1.00 1 048 528.46 20.23 0.88 1 457.78 642.04 321.91
Cm 0.05 0.80 1.00 1.00 267.03 10.19 0.43 724.84 319.24 160.18
inside-bark d 0.50 0.16 0.19 0.19 0.19 10.78 0.06 85.38 37.60 18.82
Vm 0.02 0.40 0.39 0.39 0.38 0.26 0.01 6.76 2.98 1.49
Wmg 0.01 0.45 0.46 0.46 0.45 0.26 0.98 9 775 4 305 2 151.99
Wmd 0.01 0.45 0.46 0.46 0.45 0.26 0.98 1.00 1896 947.79
Cm 0.01 0.45 0.46 0.46 0.45 0.26 0.98 1.00 1.00 473.74
Vs Vt Wsg Wsd Cs Vs Vt Wsg Wsd Cs
outside-bark Vs 0.01 0.01 6.04 2.66 1.31 0.01 0.01 3.95 1.74 0.87
Vt 0.85 0.01 7.55 3.32 1.66 0.00 0.01 5.66 2.49 1.25
Wsg 0.87 0.85 9 234 4 066 2 045 4.19 4.44 5 906 2 601 1 300
Wsd 0.87 0.85 1.00 1791 900 1.85 1.96 2 601 1 145 572.82
Cs 0.85 0.84 1.00 1.00 453.69 0.93 0.99 1 306 575.25 287.62
inside-bark Vs 0.48 0.54 0.54 0.54 0.54 0.01 0.01 9.27 4.08 2.04
Vt 0.41 0.67 0.48 0.48 0.48 0.89 0.01 9.75 4.29 2.15
Wsg 0.48 0.54 0.54 0.54 0.54 1.00 0.89 13 075 5 758 2 879
Wsd 0.48 0.54 0.54 0.54 0.54 1.00 0.89 1.00 2 536 1 333
Cs 0.48 0.54 0.54 0.54 0.54 1.00 0.89 1.00 1.00 634.09

The variances are presented on the diagonal of the matrices, and the covariances and correlation coefficients are at the top and bottom of the diagonal, respectively. d = taper, Vm = merchantable volume, Vs = stem volume, Vt = total tree volume, Wmg = merchantable green weight, Wsg = stem green weight, Wsd = stem biomass, Cm = merchantable carbon concentration, Cs = stem carbon concentration.

Although the results of fitting the CS equations showed efficient statistics assuming constant density, a function to model density would improve the results. This is because wood density values increase from the base of the tree to the top, as well as from the center of the stem to the outside of the bark (Calegario, Gregoire, da Silva, Tomazello, & Alves, 2017). In addition, young trees with narrow growth rings have higher wood density than old trees (Pajtík, Konôpka, & Lukac, 2008). The use of a linear or quadratic wood density function may improve predictive accuracy; however, improvements may only be marginal and can considerably increase the complexity of the system (Jiang & Brooks, 2008).

Conclusions

A compatible taper, volume, green weight, dry biomass and carbon concentration system for the species Q. sideroxyla was generated, with the inclusion of wood density. Fitting statistics showed that outside- and inside-bark equations efficiently estimate variables in the stem, total tree and branch components. Variables can be estimated at a desired upper-diameter or upper-height. Although density was not modeled as a function of merchantable height in the compatible system, the results demonstrate that the equations are consistent. These can be used to carry out timber and carbon inventories, for forest management and planning objectives or for environmental services in the measurement and monitoring of carbon sequestration. In addition, the compatible system allows estimating the biomass expansion factors.

Acknowledgments

The first author thanks the Consejo de Ciencia y Tecnología (CONACYT) for postdoctoral fellowship 247171, for the postdoctoral stay at The University of Georgia. Thanks also go to the ejido San Diego de Tezains for the use of the taper data of the species studied.

References

Aquino-Ramírez, M., Velázquez-Martínez, A., Echevers-Barra, J. D., & Castellanos-Bolaños, J. F. (2018). Carbon concentration in three species of tropical trees in the Sierra Sur of Oaxaca Mexico. Agrociencia, 52(3), 455-465. Retrieved from http://www.colpos.mx/agrocien/Bimestral/2018/abr-may/abr-may-18.htmlLinks ]

Bailey, R. L. (1995). Upper stem volumes from stem analysis data: An overlapping bolts method. Canadian Journal of Forest Research, 25(1), 170-173. doi: 10.1139/x95-020 [ Links ]

Brooks, J. R., Jiang, L., & Clark III, A. (2007). Compatible stem taper, volume, and weight equations for young longleaf pine plantations in Southwest Georgia. Southern Journal of Applied Forestry, 31(4), 187-191. doi: 10.1093/sjaf/31.4.187 [ Links ]

Brooks, J. R., Jiang, L., & Zhang, Y. (2007). Predicting green and dry mass of yellow-poplar: An integral approach. Canadian Journal of Forest Research, 37(4), 786-794. doi: 10.1139/x06-210 [ Links ]

Calegario, N., Gregoire, T. G., da Silva, T. A., Tomazello, F. M., & Alves, J. A. (2017). Integrated system of equations for estimating stem volume, density, and biomass for Australian redcedar (Toona ciliata) plantations. Canadian Journal of Forest Research, 47(5), 681-689. doi: 10.1139/cjfr-2016-0135 [ Links ]

Corral-Rivas, J., Vega-Nieva, D., Rodríguez-Soalleiro, R., López-Sánchez, C., Wehenkel, C., Vargas-Larreta, B., . . . Ruiz-González, A. (2017). Compatible system for predicting total and merchantable stem volume over and under bark, branch volume and whole-tree volume of pine Species. Forests, 8(11), 417. doi: 10.3390/f8110417 [ Links ]

Fang, Z., Borders, E., & Bailey, L. (2000). Compatible volume-taper models for Loblolly and Slash Pine based on a system with segmented-stem form factors. Forest Science, 46(1), 1-12. doi: 10.1093/forestscience/46.1.1 [ Links ]

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen (5.a ed.). México: Universidad Autónoma Nacional de México, Instituto de Geografía. [ Links ]

Jiang, L., & Brooks, J. R. (2008). Taper, volume, and weight equations for Red Pine in west Virginia. Northern Journal of Applied Forestry, 25(3), 151-153. doi: 10.1093/njaf/25.3.151 [ Links ]

Jordan, L., Souter, R., Parresol, B., & Daniels, R. F. (2006). Application of the algebraic difference approach for developing self-referencing specific gravity and biomass equations. Forest Science, 52(1), 81-92. doi: 10.1093/forestscience/52.1.81 [ Links ]

Kozak, A., & Smith, J. H. G. (1993). Standards for evaluating taper estimating systems. The Forestry Chronicle, 69(4), 438-444. doi: 10.5558/tfc69438-4 [ Links ]

Miles, P. D., & Smith, W. B. (2009). Specific gravity and other properties of wood and bark for 156 tree species found in North America (vol. 38). USA: US Department of Agriculture, Forest Service, Northern Research Station. Retrieved from https://www.fs.usda.gov/treesearch/pubs/34185 [ Links ]

Nájera, L. J. A., Escárpita, B. J. L., Honorato, S. J. A., Hernández, F. J., Graciano, J. J., & de la Cruz, C. R. (2007). Physical and mechanical properties of wood in Quercus sideroxyla Hump & Bonpl of El Salto, Durango. TecnoINTELECTO, 4(1), 13-18. Retrieved from https://www.researchgate.net/publication/242242832_PROPIEDADES_FISICOMECANICAS_DE_LA_MADERA_EN_Quercus_sideroxyla_Hump_Bonpl_DE_LA_REGION_DE_EL_SALTO_DURANGO_Physical_and_mechanical_properties_of_wood_in_Quercus_sideroxyla_Hump_Bonpl_of_El_Salto_DuranLinks ]

Návar, J. (2009). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257(2), 427-434. doi: 10.1016/j.foreco.2008.09.028 [ Links ]

Ordóñez-Díaz, J. A. B., Galicia-Naranjo, A., Venegas-Mancera, N. J., Hernández-Tejeda, T., Ordóñez-Díaz, M. d. J., & Dávalos-Sotelo, R. (2015). Densidad de las maderas mexicanas por tipo de vegetación con base en la clasificación de J. Rzedowski: compilación. Madera y Bosques, 21, 77-216. Retrieved from http://www.scielo.org.mx/pdf/mb/v21nspe/v21nspea6.pdfLinks ]

Özçelik, R., & Cao, Q. V. (2017). Evaluation of fitting and adjustment methods for taper and volume prediction of Black Pine in Turkey. Forest Science, 63(4), 349-355. doi: 10.5849/FS.2016-067 [ Links ]

Özçelik, R., & Crecente-Campo, F. (2016). Stem taper equations for estimating merchantable volume of Lebanon Cedar trees in the Taurus Mountains, southern Turkey. Forest Science, 62(1), 78-91. doi: 10.5849/forsci.14-212 [ Links ]

Pajtík, J., Konôpka, B., & Lukac, M. (2008). Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology and Management, 256(5), 1096-1103. doi: 10.1016/j.foreco.2008.06.013 [ Links ]

Parresol, B. R. (1999). Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, 45(4), 573-593. doi: 10.1093/forestscience/45.4.573 [ Links ]

Parresol, B. R. (2001). Additivity of nonlinear biomass equations. Canadian Journal of Forest Research , 31(5), 865-878. doi: 10.1139/x00-202 [ Links ]

Parresol, B. R., & Thomas, C. E. (1989). A density-integral approach to estimating stem biomass. Forest Ecology and Management, 26(4), 285-297. doi: 10.1016/0378-1127(89)90089-3 [ Links ]

Parresol, B. R., & Thomas, C. E. (1996). A simultaneous density-integral system for estimating stem profile arid biomass: slash pine and willow oak. Canadian Journal of Forest Research , 26(5), 773-781. doi: 10.1139/x26-087 [ Links ]

Pérez-Olvera, C. d. l. P., & Dávalos-Sotelo, R. (2008). Algunas características anatómicas y tecnológicas de la madera de 24 especies de Quercus (encinos) de México. Madera y Bosques, 14(3), 43-80. Retrieved from http://www.redalyc.org/articulo.oa?id=61712189003Links ]

De la Paz, P.O., Dávalos-Sotelo, R, Limón-Godina, R., & Quintanar Isaías, P.A. (2015). Características tecnológicas de la madera de dos especies de Quercus de Durango, México. Madera y Bosques, 21(3), 19-46. Retrieved from http://www.scielo.org.mx/pdf/mb/v21n3/v21n3a2.pdfLinks ]

Quiñonez-Barraza, G., De los Santos-Posadas, H. M., Álvarez-González, J. G., & Velázquez-Martínez, A. (2014). Compatible taper and merchantable volume system for major pine species in Durango, Mexico. Agrociencia, 48(5), 553-567. Retrieved from http://www.scielo.org.mx/pdf/agro/v48n5/v48n5a8.pdfLinks ]

SAS Institute Inc. (2015). Base SAS 9.4 ® Procedures Guide: Statistical Procedure (3rd ed.). Cary, NC, USA: Author. Retrieved from https://support.sas.com/documentation/cdl/en/procstat/67528/PDF/default/procstat.pdfLinks ]

Schumacher, F. X. (1933). Logarithmic expression of timber-tree volume. Journal of Agricultural Research, 47(9), 719-734. Retrieved from https://naldc.nal.usda.gov/download/IND43968352/PDFLinks ]

Silva-Arredondo, F. M., & Návar-Cháidez, J. J. (2009). Estimación de factores de expansión de carbono en comunidades forestales templadas del norte de Durango, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(2), 155-163. Retrieved from https://www.chapingo.mx/revistas/forestales/contenido.php?seccion=numero&id_revista_numero=40Links ]

Simental-Cano, B., López-Sánchez, C. A., Wehenkel, C., Vargas-Larreta, B., Álvarez-González, J. G., & Corral-Rivas, J. J. (2017). Species-specific and regional volume models for 12 forest species in Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(2), 155-171. doi: 10.5154/r.rchscfa.2016.01.004 [ Links ]

Valenzuela, C., Acuña, E., Ortega, A., Quiñonez-Barraza, G., Corral-Rivas, J., & Cancino, J. (2018). Variable-top stem biomass equations at tree-level generated by a simultaneous density-integral system for second growth forests of roble, raulí, and coigüe in Chile. Journal of Forestry Research. doi: 10.1007/s11676-018-0630-9 [ Links ]

Vargas-Larreta, B., Corral-Rivas, J. J., Aguirre-Calderón, O. A., López-Martínez, J. O., De los Santos-Posadas, H. M., Zamudio-Sánchez, F. J., . . . Aguirre-Calderón, C. G. (2017). SiBiFor: Forest Biometric System for forest management in Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(3), 437-455. doi: 10.5154/r.rchscfa.2017.06.040 [ Links ]

Vargas-Larreta, B., López-Sánchez, C. A., Corral-Rivas, J. J., López-Martínez, J. O., Aguirre-Calderón, C. G., & Álvarez-González, J. G. (2017). Allometric equations for estimating biomass and carbon stocks in the temperate forests of north-western Mexico. Forests, 8(8), 269. doi: 10.3390/f8080269 [ Links ]

Ver Planck, N. R., & MacFarlane, D. W. (2015). A vertically integrated whole-tree biomass model. Trees, 29(2), 449-460. doi: 10.1007/s00468-014-1123-x [ Links ]

Williams, M. S., & Reich, R. M. (1997). Exploring the error structure of taper equations. Forest Science, 43(3), 378-386. doi: 10.1093/forestscience/43.3.378 [ Links ]

Zakrzewski, W. T., & Duchesne, I. (2012). Stem biomass model for jack pine (Pinus banksiana Lamb.) in Ontario. Forest Ecology and Management , 279(1), 112-120. doi: 10.1016/j.foreco.2012.05.012 [ Links ]

Zhang, Y., Borders, B. E., & Bailey, R. L. (2002). Derivation, fitting, and implication of a compatible stem taper-volume-weight system for intensively managed, fast growing Loblolly pine. Forest Science, 48(3), 595-607. doi: 10.1093/forestscience/48.3.595 [ Links ]

Zhao, D., Kane, M., Markewitz, D., Teskey, R., & Clutter, M. (2015). Additive tree biomass equations for midrotation Loblolly pine plantations. Forest Science, 61(4), 613-623. doi: 10.5849/forsci.14-193 [ Links ]

Zhao, D., Kane, M., Teskey, R., & Markewitz, D. (2016). Modeling aboveground biomass components and volume-to-weight conversion ratios for Loblolly pine trees. Forest Science, 62(5), 463-473. doi: 10.5849/forsci.15-129 [ Links ]

Received: June 15, 2018; Accepted: October 15, 2018

*Corresponding author: quinonez.geronimo@inifap.gob.mx; tel.: +52 (618) 158 7865.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License