SciELO - Scientific Electronic Library Online

vol.11 issue5Single Maneuvering Target Tracking in Clutter Based on Multiple Model Algorithm with Gaussian Mixture ReductionA PSO Procedure for a Coordinated Tuning of Power System Stabilizers for Multiple Operating Conditions author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Journal of applied research and technology

On-line version ISSN 2448-6736Print version ISSN 1665-6423

J. appl. res. technol vol.11 n.5 México Oct. 2013


Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm


Sadiq M. Sait*1, 2, Ahmad T. Sheikh1, Aiman H. El-Maleh1


1 Department of Computer Engineering.

2 Center for Communications and IT Research, Research Institute. King Fahd University of Petroleum & Minerals. Dhahran-31261, Saudi Arabia. *



In recent years, substantial advancements have been made in VLSI technology. With the introduction of CMOL (Cmos\nanowire\MOLecular Hybrid), higher circuit densities are possible. In CMOL there is an additional layer of nanofabric on top of CMOS stack. Nanodevices that lie between overlapping nanowires are programmable and can implement any combinational logic using a netlist of NOR gates. The limitation on the length of nanowires put a constraint on the connectivity domain of a circuit. The gates connected to each other must be within a connectivity radius; otherwise an extra buffer is inserted to connect them. Particle swarm optimization (PSO) has been used in a variety of problems that are NP-hard. PSO compared to the other iterative heuristic techniques is simpler to implement. Besides, it delivers comparable results. In this paper, a hybrid of PSO and simulated annealing (SA) for solving the cell assignment in CMOL, an NP-hard problem, is proposed. The proposed method takes advantage of the exploration and exploitation factors of PSO and the intrinsic hill climbing feature of SA to reduce the number of buffers to be inserted. Experiments conducted on ISCAS'89 benchmark circuits and a comparison with other heuristic techniques, are presented. Results showed that the proposed hybrid algorithm achieved better solution in terms of buffer count in reasonable time.

Keywords: CMOL, combinatorial optimization, search heuristics, nanofabric, assignment, VLSI, hybrid heuristics.





[1] Philip J. Kuekes, Duncan R. Stewart, and R. Stanley Williams. The crossbar latch: logic value storage, restoration, and inversion in crossbar circuits. Journal of Applied Physics, 97:03430115, 2005.         [ Links ]

[2] D. J. Resnick. Imprint lithography for integrated circuit fabrication. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21:26-24, 2003.         [ Links ]

[3] K. K. Likharev and D. V. Strukov. CMOL: devices, circuits, and architectures. In G Cuniberti et al., editors, Introduction to Molecular Electronics, pages 447-477. Springer, Berlin, 2005.         [ Links ]

[4] Dmitri B. Strukov and Konstantin K. Likharev. CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two terminal nanodevices. Nanotechnology, 16(6):888-900, 2005.         [ Links ]

[5] Ô. Türel, J. H. Lee, X. Ma, and Konstantin K. Likharev. Architectures for nanoelectronic implementation of artificial neural networks: new results. Neurocomputing, 64:271-283, 2005.         [ Links ]

[6] D. Strukov and K. Likharev. A reconfigurable architecture for hybrid CMOS/nanodevice circuits. In FPGA06, pages 131-140, Monterey, California, USA, 2006.         [ Links ]

[7] William N. N. Hung, Changjian Gao, Xiaoyu Song, and Dan Hammerstrom. Defect Tolerant CMOL Cell Assignment via Satisfiability. IEEE Sensors Journal, 8(6):823-830, June 2008.         [ Links ]

[8] Mohammed El-Abd, Hassan Hassan, Mohab Anis, Mohamed S. Kamel, and Mohamed Elmasry. 2010. Discrete cooperative particle swarm optimization for FPGA assignment. Appl. Soft Computing 10, 1 (January 2010), 284-295.         [ Links ]

[9] Lim, A., Lin, J., & Xiao, F. (2007). Particle Swarm Optimization and Hill Climbing for the bandwidth minimization problem. Applied Intelligence, 26(3), 175-182.         [ Links ]

[10] F. Glover, J. P. Kelly, and M. Laguna. Genetic algorithms and tabu search: Hybrids for optimization. Computers and Operations Research, 22(1):111-134, 1995.         [ Links ]

[11] Sait, S.M., Youssef, H.: Iterative Computer Algorithms with Applications in Engineering: Solving Combinatorial Optimization Problems. IEEE Computer Society Press, California (1999).         [ Links ]

[12] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942-1948.         [ Links ]

[13] Kennedy, J.; Eberhart, R.C. "A discrete binary version of the particle swarm algorithm", IEEE International Conference on Systems, Man, and Cybernetics, 1997.         [ Links ]

[14] Brglez, F., Bryan, D., Kozminski, K.: Combinational profiles of sequential benchmark circuits. In: Circuits and Systems, 1989, IEEE International Symposium on, pp. 1929-1934 vol.3 (1989). DOI 10.1109/ISCAS.1989.100747.         [ Links ]

[15] Strukov, D.B., Likharev, K.K.: A reconfigurable architecture for hybrid CMOS/Nanodevice circuits. In: Proceedings of the 2006. ACM/SIGDA 14th international symposium on Field programmable gate arrays, FPGA 06, pp. 131-140. ACM, New York, NY, USA (2006).         [ Links ]

[16] Andrew Lim, Jing Lin, and Fei Xiao. 2007. Particle Swarm Optimization and Hill Climbing for the bandwidth minimization problem. Applied Intelligence 26, 3 (June 2007), 175-182. DOI=10.1007/s10489-006-0019-x         [ Links ]

[17] Xia Y., Chu Z., Hung, W. N., Wang, L., Song, X.: CMOL cell assignment by genetic algorithm. In: NEWCAS Conference (NEWCAS), 2010 8th IEEE International, pp. 25-28 (2010). DOI 10.1109/NEWCAS.2010.5603746.         [ Links ]

[18] Chu Z., Xia Y., Hung, W.N., Wang L., Song X.: A memetic approach for nanoscale hybrid circuit cell mapping. In: Digital System Design: Architectures, Methods and Tools (DSD), 2010 13th Euromicro Conference on, pp. 681-688 (2010). DOI 10.1109/DSD.2010.22.         [ Links ]

[19] Xia Y., Chu Z., Hung W., Wang L., Song,X.: An integrated optimization approach for nano-hybrid circuit cell mapping. Nanotechnology, IEEE Transactions on PP (99), 1 (2011). DOI 10.1109/TNANO.2011.2131153.         [ Links ]

[20] A. E. Ylmaz F. Yaman. Impacts of genetic algorithm parameters on the solution performance for the uniform circular antenna array pattern synthesis problem. Journal of Applied Research and Technology, 8(3):378-394, December, 2010.         [ Links ]

[21] Nareli Cruz-Cortes Ricardo Barron-Fernandez Jesus A. Alvarez-Cedillo Gerardo A. Laguna-Sanchez, Mauricio Olguin-Carbajal. Comparative study of parallel variants for a particle swarm optimization algorithm implemented on a multithreading GPU. Journal of Applied Research and Technology, 7(3):292-309, December, 2009.         [ Links ]

[22] A. Miranda-Vitela F. Lara-Rosano J. L. Perez-Silva, A. Garces-Madrigal. Dynamic fuzzy logic functor. Journal of Applied Research and Technology, 6(2):84-94, August, 2008.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License