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ABSTRACT 
In recent years, substantial advancements have been made in VLSI technology. With the introduction of CMOL 
(Cmos\nanowire\MOLecular Hybrid), higher circuit densities are possible. In CMOL there is an additional layer of nanofabric 
on top of CMOS stack. Nanodevices that lie between overlapping nanowires are programmable and can implement any 
combinational logic using a netlist of NOR gates. The limitation on the length of nanowires put a constraint on the 
connectivity domain of a circuit. The gates connected to each other must be within a connectivity radius; otherwise an extra 
buffer is inserted to connect them. Particle swarm optimization (PSO) has been used in a variety of problems that are NP-
hard. PSO compared to the other iterative heuristic techniques is simpler to implement. Besides, it delivers comparable 
results. In this paper, a hybrid of PSO and simulated annealing (SA) for solving the cell assignment in CMOL, an NP-hard 
problem, is proposed. The proposed method takes advantage of the exploration and exploitation factors of PSO and the 
intrinsic hill climbing feature of SA to reduce the number of buffers to be inserted. Experiments conducted on ISCAS’89 
benchmark circuits and a comparison with other heuristic techniques, are presented. Results showed that the proposed 
hybrid algorithm achieved better solution in terms of buffer count in reasonable time. 
 
Keywords: CMOL, combinatorial optimization, search heuristics, nanofabric, assignment, VLSI, hybrid heuristics. 
 

 
1. Introduction 
 
In recent years, we have witnessed a tremendous 
development in the field of VLSI. We have seen the 
appearance of novel nanodevices, nanocircuits, 
nano-crossbar arrays [1], manufactured by nano-
imprint lithography [2], CMOS/nano co-design 
architectures [3], and, their applications [5], [1]. 
Likharev and his colleagues [3], [4], developed the 
idea of CMOL (Cmos\nanowire\MOLecular Hybrid) 
for nanoelectronic devices. One of the problems in 
CMOL based circuit design is cell assignment.  
 
The CMOL cell assignment problem can be modeled 
as a special case of cell assignment problem on an 
FPGA, where one of the main objectives is to reduce 
the overall wire length. Whereas in CMOL, the goal is 
to place the connected cells close to each other with 
the constraint that these connected cells lie within a 
given radius from each other. Considerable amount 
of work has been done to tackle this problem. 
Strukov et al. proposed a deterministic algorithm [15], 
suitable for small circuits. Non-deterministic heuristic 
algorithms such as tabu search, particle swarm and 

 
 
simulated annealing have been widely used to solve 
a multitude of combinatorial optimization problems 
[20, 21, 22]. Xia Y. et al used genetic algorithm (GA) 
and laid the foundation to solve CMOL cell 
assignment problem using iterative heuristic 
algorithms [17]. The GA was able to find good 
solutions within acceptable time for circuits of varying 
complexity. Memetic algorithm (MA) an improvement 
of GA proposed by Z. Chu et al. [18], is a combination 
of GA and simulated annealing (SA). Another recent 
improvement proposed by Y. Xia et al. [19] combines 
Lagrangian relaxation (LR) technique and MA, hence 
the name LRMA, to solve the CMOL cell assignment 
problem. Higher quality solutions in terms of 
computational time and solution quality are reported 
with LRMA as compared to both GA and MA. 
 
Ideas on combining strengths of different heuristics 
have been around for some time. In the past SA 
has been used effectively as a hybrid with other 
algorithms like tabu search (TS), genetic algorithm 
(GA) and simulated evolution (SimE) [11]. The 
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basic idea of hybridization is to enhance the 
strengths and compensate for the weaknesses of 
two or more complementary approaches [10].  
 
In this paper, the CMOL cell assignment problem 
using a hybrid of particle swarm optimization 
(PSO) technique and the simulated annealing (SA) 
algorithm is investigated. PSO, developed by 
Kennedy & Eberhart in 1995, is based on the 
social behavior of birds, fish and bees [12]. The 
strength of PSO lies in its simplicity of 
implementation and in achieving comparable and 
sometimes better results as compared to other 
heuristic techniques. PSO has been widely used in 
problems such as bandwidth minimization [9], 
FPGA cell assignment [13] [8] and others. 
 
In PSO, each particle carries a complete solution 
whose global best and the particle’s personal best 
solution are updated only when the current solution 
improves, and this may lead to entrapment in a local 
minima. Simulated annealing (SA) algorithm is 
another widely used iterative heuristic algorithm. 
The powerful feature of SA is its intrinsic hill 
climbing capability. Therefore, SA is used in 
conjunction with the PSO algorithm for local minima 
avoidance. The proposed technique in [8], [9] is 
adopted for the CMOL cell assignment problem.  
 
The rest of the paper is organized as follows: In 
Section 2, CMOL architecture is discussed. 
Problem formulation is given in Section 3. Section 
4, discusses how PSO and SA are utilized to solve 
this problem. Implementation results are given in 
Section 5 and conclusions are drawn in Section 6. 
 
2. CMOL FPGA architecture 
 
CMOL, developed by Likharev et al. [3], consists of 
nanodevices. These nanodevices can be any two 
terminal nanodevices, e.g., “latching switch” based 
on molecules with two metastable internal states. 
Figure 1 shows the basic structure of CMOL. The 
nanodevices are sandwiched between the two 
levels of perpendicular nano-imprinted nanowires. 
Logic functions are created by a combination of 
CMOS inverters and diode-like nanodevices as 
shown in Figure 2. In each cell there is a CMOS 
inverter, and nanowires are aligned such that one 
of their ends receive signal from the output of 
CMOS inverters. Those nanowires are OR’ed 
together with nanowires aligned with another (in 

orthogonal direction) according to the nanodevice 
configurations to give a wired-OR logic. This 
OR’ed signal goes to the inverter’s input, which is 
on the CMOS stack to implement the required 
NOR-INV logic. For example, in Figure 2, X, Y and 
F are three signals connected with the three 
grayed cells’ output pins. With the shown nanowire 
connections (lines) and “ON” nanodevices (dots), 
the logic expression is ܨ =  ܺ +  ܻതതതതതതതതത. 
 

 
 

Figure 1. Generic CMOL circuit schematic side view. 
 
This cell assignment task poses a challenge for 
larger circuits. In this paper our goal is to 
investigate this problem as an optimization 
problem, while reducing the buffers, and finding a 
solution in reasonable CPU time. 
 

 
 

Figure 2. CMOL FPGA configuration example [4]. 
 
3. Problem formulation 
 
In computer-aided design (CAD) of digital systems, 
the assignment of cells to a given set of locations 
(in order to minimize a given cost function) is an 
NP-hard problem [11]. Even the simplest case of 
one dimensional assignment problem is hard to 
solve. In a 2-D array of n locations there are as 
many as the following arrangements for placing ݉ 
cells. 
 ܵ =  ݊(݊ −  1)(݊ − 2) … (݊ −  ݉ +  1)  (1) 
 
Where ݉ could be in multiples of thousands. Due 
to the aforementioned complexity and overtime 
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work, designers have turned their attention to 
develop heuristic techniques to solve the assignment 
problem in order to find an optimal solution in 
polynomial time. 
 
Given a collection of NOR/INV gates, and the 
collection of nets (the set of ports to be connected 
together), the CMOL cell assignment problem 
consists of finding suitable locations for each gate 
under the constraint of connectivity domain and a 
given cost function. Formally the problem can be 
restated as: For a set of gates ܩ =  ݃1, ݃2, ݃3, … ݃݉ and a set of netlists Γ ,ଵߛ = ,ଶߛ ,ଷߛ …  ௜ = {fan - ini & fan - outi} of giߛ ௠ whereߛ
and given a set of slots or locations ܮ = ܮଵ, ,ଶܮ ,ଷܮ … , ≥ ݉ ௡ whereܮ ݊, the assignment 
problem is to assign each ௜݃  to a unique ܩ ߳ 
location ܮ௝ such that the objective is optimized. 
Positions are defined by the coordinate values (ݔ௜,  that represent ܩ ௝) and the subset ofݕ
inputs/outputs may be pre-assigned to fixed 
locations or constrained to certain positions. 
 
Each CMOL cell can implement one inverter or 
one NOR gate with multiple fan-in, however, 
complying with connectivity constraint can be 
substantially harder if gates of high fan-in are 
allowed. Each CMOL cell can be connected to one 
of its proximity cell members; any violation of this 
constraint would impose further processing (i.e., 
buffer insertion) to satisfy connectivity. However, 
such process would cause more congestion to the 
already congested CMOL circuit and could result in 
substantial increase of timing delay. 
Mathematically, the “Connectivity Domain” can be 
defined as follows; given a gate and its netlist ( ௜݃ , ௜ , for any gate ݃௞ܮ ௜ ) placed in locationߛ  ௜, the following Inequalityߛ and ݃௞ in the netlist ܩ⊇ 
should be satisfied. 
,௝ܮ൫ݐݏ݅݀  ௞൯ܮ ≤  (2)     ݎ
 
Where ܮ௞ is the location of ݃௞, ݀݅ݐݏ is the 
Manhattan distance, and ݎ is CMOL connectivity 
radius. The objective of CMOL cell assignment is 
to satisfy the constraint inequality (2), and to 
minimize the distance between connected gates in 
circuit G. Failing to comply with CMOL constraint 
will result in an implementation that has more 
delay and area requirements. 
 
 

4. Particle swarm optimization (PSO) 
 
PSO which was proposed by Kennedy and 
Eberhart [13] is utilized in this work. A PSO 
algorithm consists of two main components, 
velocity and position. The velocity determines the 
rate at which a particle can change its position. In 
PSO, the non-determinism comes from the velocity 
component only. The discrete PSO as proposed by 
the original authors consists of the following two 
main equations: 
 ௜ܸ(ݐ + 1) = ߱ × ௜ܸ + ܿଵݎଵ൫ݐݏ݁ܤ݌௜ − ௜ܺ(ݐ)൯ +ܿଶݎଶ൫݃ݐݏ݁ܤ − ௜ܺ(ݐ)൯    (3) 
 ௜ܺ(ݐ + 1) =  ௜ܺ(ݐ) + ௜ܸ(ݐ + 1)   (4) 
 
In the above equations, ߱ is a constant to give 
certain weight to previous velocity, ܿଵ and ܿଶ are 
arbitrary constants, ݎଵ and ݎଶ are random variables 
of uniform distribution, ݐݏ݁ܤ݌௜ is the best solution of 
particle ݅ so far, ݃ݐݏ݁ܤ is the overall global best 
solution among all particles. The ݐݏ݁ܤ݌௜ of a 
particle is the exploitation factor, while ݃ݐݏ݁ܤ helps 
in the exploration of solution space. This way, 
particles try not only to come closer to their own 
best solution, but also to the global best solution 
with a certain probability and weight factor. 
 
In the proposed discrete PSO algorithm, each 
particle holds a complete solution which in our 
case is a 2-D grid representation of the 
assignment. For example, if the dimensions of a 
grid are 5 × 5, then the position of a particle is an 
assignment of cells to this grid of 25 elements with 
I/Os on the outer boundary of grid. Empty locations 
are denoted by −1. In the proposed formulation, 
the velocity is represented as a sequence of swaps 
[8] [9]. For example, velocity ܸ = (2, 5); (4, 7) represents swaps between cells 2 & 5 
and 4 & 7, respectively. Swaps can only be 
performed between cells of the same types i.e., I/O 
with an I/O and Gate with a Gate. Hence, two 
velocity vectors are maintained and updated. 
Swapping between different logic types is not 
allowed. The current position of a particle ௜ܺ 
denotes the assignment of all cells within a grid. 
During initialization, the position ௜ܺ of each particle 
is initialized randomly and the velocity ௜ܸ is zero to 
control the total number of swaps, | ௜ܸ| = 0 → ௠ܸ௔௫. 
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The algorithm used in this work is shown in Figure 
3. In the proposed algorithm [۱܍ܜܝܘܕܗ ூܸ/ை௜ , ௅ܸ௢௚௜௖௜ ] 
and [۱܍ܜܝܘܕܗ ூܺ/ை௜ , ܺ௅௢௚௜௖௜ ] are computed using 
Equations (3) and (4) for each particle ݅ 
respectively. [۱ܜ܋ܝܚܜܛܖܗ  ܺ௜ = [ܺூ/ை௜ , ܺ௅௢௚௜௖௜ ]] means 
constructing a new grid based on updated 
positions of ܺூ/ை௜  and  ܺ௅௢௚௜௖௜ .  
 
Simulated annealing (SA) algorithm [11] is shown 
in Figure 4. It is invoked for each particle ݅ if the 
global best solution does not improve for 10 
iterations. It works by constructing a list of cells 
violating the connectivity constraint and then 
randomly swapping them with cells in the grid. The 
decision to make a swap is based on the condition 
given at line 15 in Figure 4, where “random” is a 
uniformly distributed random number. Hence, 
using SA, the movements of individual cell can be 
controlled in order to search for better solution. 
 

Algorithm: Discrete PSO 
Require: ܵ݁ݖ݅ܵ ݉ݎܽݓ, ,ݎ݁ݐܫݔܽܯ  ݈݁݅ܨݐݑ݌݊ܫ
1: Read Input File 
2: Initialize the Swarm 
ݎ݁ݐ݅ :3 = 1 
4: while (݅ݎ݁ݐ ≤  do (ݎ݁ݐܫݔܽܯ
5:  for all (ܲܽݏ݈݁ܿ݅ݐݎ ݅) do 
6:   Compute ூܸ/ை௜ , ௅ܸ௢௚௜௖௜  

7:   Compute ܺூ/ை௜ , ܺ௅௢௚௜௖௜  

8:   Construct ܺ௜ = [ܺூ/ை௜ , ܺ௅௢௚௜௖௜ ] 
9:   if (ܿ݊݋݅ݐݑ݈݋ܵݐ݊݁ݎݎݑ௜ <  ௜)thenݐݏ݁ܤ݌
௜ݐݏ݁ܤ݌    :10 =  ௜݊݋݅ݐݑ݈݋ܵݐ݊݁ݎݎݑܿ 
11:   end if 
12:  end for 
௜௧௘௥ݐݏ݁ܤ݃   :13 = arg ݉݅݊∀௜(ݐݏ݁ܤ݌௜,      (௜௧௘௥ିଵݐݏ݁ܤ݃
ݎ݁ݐ݅  :14 + + 
15:  if (݈݋ܵ ݈ܾܽ݋݈ܩ.   (ݎ݁ݐ݅ 10 ݎ݋݂ ݀݁ݒ݋ݎ݌݉݅ ݐ݋݊
16:  Invoke SA ∀ Particle ݅  

  
17:  end if 
18: end while 

 
 

Figure 3. PSO algorithm. 
 

4.1 PSO operators 
 
In the context of cell assignment problem, the 
operators used in the discrete PSO equations 3 
and 4, need to be defined. In order to subtract two 
vectors, let us say ܺ − ܻ, the result of subtraction 

will be the number of swaps required so that vector ܻ becomes vector ܺ. Therefore, the velocity is 
defined as the number of required swaps. 
 
The complexity of this operation increases 
significantly when the problem size increases.  
 
Algorithm: Simulated annealing 
Require: ܵ଴, ܶ, ெܶூே 
1: ܵ଴: Initial Solution 
2: ܵே௘௪: New Solution 
3: ܶ: Initial Temperature 
4: ெܶூே: Terminating Temperature 
 Cooling Coefficient :ߙ :5
 List of cells violating radius criterion :܄ :6
7: while (ܶ ≥ ெܶூே) do 
8:  ݇ = 0 
9:  while (݇ ≤ ݇௠௔௫) do 
= ݐݏ݋ܥ   :10  ;(଴ܵ)ݐݏ݋ܥ 
11:   ܵோௐ = ݏ݈݈݁ܿ_݋ݓݐ_݂݋_݌ܽݓݏ_݉݋݀݊ܽݎ ∈   ܄
ோௐݐݏ݋ܥ   :12 =  (ோௐܵ)ݐݏ݋ܥ
13:   ∆ℎ = ோௐݐݏ݋ܥ  −  ݐݏ݋ܥ
݉݋݀݊ܽݎ   :14 = ,0)݀݊ܽݎ 1) 

15:   if ((∆ℎ < 0) or (݀݊ܽݎ. <  ݁ି∆೓೅ )) then 
ݐݏ݋ܥ    :16 =   ோௐݐݏ݋ܥ 
17:    ܵ଴ = ܵோௐ 
18:    ݇ + + 
19:   end if  
20:  end while 
21:  ܶ =  ܶߙ
22: end while

 
 

Figure 4. Simulated annealing (SA) algorithm. 
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Figure 5. Subtraction b/w two grids and  

their resultant velocity vector. 
 
Therefore, the size of the resulting velocity is 
clamped to ௠ܸ௔௫ to limit the number of swaps from 
becoming too large. The subtract operator is 
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explained in Figure 5, as can be observed, 
|ܸ|  =  6 ⇒ six swaps have to be applied on grid Y 
so that ܻ =  ܺ. The velocity vector contains the 
sequence of swaps between corresponding cells. 
 
Multiplying a velocity ݒ by a constant ܿ implies 
increasing the number of swaps if constant is >  1. 
Otherwise, the velocity vector is truncated. Then, if ܿ >  1, then new swaps are added to the end of ݒ 
to increase its length by |ݒ| − ܿ. The swaps to be 
added are extracted from the top of ݒ. Similarly, if ܿ < 1, then swaps are truncated until the size of 
resulting velocity  ≈ ݒ ×  ܿ. The multiplication of 
velocity vector with a constant is illustrated in 
Figure 6 and the addition of two velocity vectors is 
shown in Figure 7. 
 
Adding velocity to the current position ௜ܺ is performed 
by applying the swaps as given in the velocity vector to 
the position vector. The position vector ௜ܺ denotes the 
locations of all cells within a grid. For example, the 
arrangement of cells in two grids in Figure 5 can be a 
position vector ௜ܺ of a particle. Swaps are applied in 
the same order as given in the velocity vector. 
 
4.2 PSO problem formulation 
 
In the proposed DPSO algorithm, the position vector ܺ is divided into two vectors ௟ܺ௢௚௜௖ and ܺூ/ை. This is to 
make sure that no swaps can occur between an I/O 
and a logic Gate. Corresponding to it, the velocity 
vector ܸ is also split into two vectors i.e., ௟ܸ௢௚௜௖ and ܺூ/ை. To update the position and velocity of each 
particle, Equations 3 and 4 are applied twice with 
operators defined in Subsection 4.1. To evaluate the 
fitness of particle’s new position, both ௟ܺ௢௚௜௖ and ܺூ/ை 
are used to construct the complete position ܺ. 
 
In CMOL cell assignment problem, the solution is 
an arrangement of logic cell in two dimensional 
grid. The grid is constructed by computing the 
number of CMOL cells required for each 
benchmark circuit. The outer cells of the grid are 
reserved for I/O pins and the inner cells are 
reserved for logic gates. This is to make sure that 
the movements of cells are constrained to their 
respective domains. After initialization, the 
contents of each cell in a grid denote the I/O 
pin/logic gate number it is holding. Empty locations 
can be denoted by -1. An example of a sample 
solution is shown in Figure 5 for a small circuit. 

4.3 Cost evaluation 
 
The objective of cell assignment is to find cell 
assignments in a way such that all connections are 
satisfied. In CMOL assignment, as explained in 
Section 3, each cell has a connectivity radius and if  
 

 V  1.5×V  V   

 (1,6)  (1,6)  (1,6)  0.5×V 

 (12,0)  (12,0)  (12,0)  (1,6) 

1.5× (5,2) = (5,2) 0.5× (5,2) = (12,0) 

 (-1,4)  (-1,4)  (-1,4)  (5,2) 

 (8,14)  (8,14)  (8,14)   

 (-1,3)  (-1,3)  (-1,3)   

   (1,6)     

   (12,0)     

   (5,2)     

 
Figure 6. Scaling velocity by a constant. 

 
    V1+V2 

V1    (1,6) 

(1,6)  V2  (12,0) 

(12,0)  (17,7)  (5,2) 

(5,2) + (8,9) =  (-1,4) 

(-1,4)  (10,2)  (17,7) 

    (8,9) 

    (10,2) 

 
Figure 7. Addition of two velocity vectors. 

 
A cell is out of the radius then, an extra buffer(s) 
need to be inserted. Given that the cells in CMOL 
are already connected via pre-assembled 
nanowires, the optimization problem is to place the 
cells in order to eliminate the need to insert extra 
buffers. Therefore, a measure to capture the 
overall quality of the solution has to be defined. 
One simple approach is to calculate the number of 
nets that violate the connectivity domain constraint. 
The cost of each gate ݃ ߳ ܩ is given in Equation 
5(b), where the cost of overall circuit is the sum of 
the costs of individual gates. 
௜ܥ  =  ∑ ௜,௝௝ఢఊ(௜)ݑ                (5a) 
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௜,௝ݑ =  ൜1 ݂݅ ݀݅ݐݏ௜,௝ >  (5b)                 ݁ݏ݅ݓݎℎ݁ݐ݋ 0ݎ

 
4.4 Particle’s evolution 
 
Each particle is randomly initialized with a unique 
solution. The best solution achieved by a particle 
during the course of iterations is its personal best 
solution. Global best solution is a best solution 
among the personal best solutions of all particles. 
Therefore, initially, each particle will have a different 
cost value. To change its position, each particle will 
either increase or decrease its velocity (number of 
swaps) in order to non-deterministically get closer to 
its personal best and the global best solution. As 
illustrated, the velocity in our case is the number of 
swaps required by a particle to move from one state 
to the other. Because the problem at hand requires 
the cells to be placed within each other’s 
connectivity radius before making any swap, cost 
will be evaluated, as mentioned in Subsection 4.3, 
before and after the swap. If the cost is improved or 
in case the new cost is the same as the previous 
one, then if overall Manhattan distance is reduced 
swap is performed, otherwise, it will not. This way, 
only those swaps that will improve the cost function 
are made and others are ignored. 
 
The intrinsic greedy nature of PSO algorithms 
allow them to converge very quickly, which may 
lead to local minima entrapment. Moreover, the 
PSO algorithm lacks the individual learning 
capability based on the fitness score of each 
cell. To address this simulated annealing (SA),-
based local search algorithm is employed. SA 
has been used for a variety of problems and has 
its strength in the simplicity of its 
implementation. If SA is run for very long time, 
then it will give an optimal solution. In this 
algorithm ܭ௠௔௫ number of random swaps 
between I/Os or logic gates for each particle’s 
solution are performed. To avoid local minima, 
the SA algorithm will accept a solution of 

increased cost with probability ݁ି∆೓೅ . The initial 
temperature ܶ is set to be 1.2. The cooling 
process is implemented using the relation ௡ܶ௘௪ = ߙ  ௢ܶ௟ௗ. The value of ߙ is fixed at 0.9. 
 
4.5 An illustrative example 
 
Let us consider an example of a simple benchmark 
circuit to elaborate the working principle of the 

proposed algorithm. For the sake of simplicity, our 
example has the following parameters, No. of 
Particles = 3, ܿଵ =  ܿଶ = 1.5, ߱ = 0.2 and 
connectivity radius = 3. The considered circuit 
s27.blif has Total Gates = 19, Logic Gates = 11, 
I/O Gates = 8 and Grid Size = 5 ×  5. The 
abbreviations used in the example are shown 
below along their definitions. 
 ,݅ Previous velocity vector of particle :࢖,࢏ࢂ 
computed using ߱ × ௜ܸ from Equation 3.  
 ݅ Personal best velocity vector of particle :ࡸ_࢏ࢂ 
computed using ܿଵݎଵ൫ݐݏ݁ܤ݌௜ − ௜ܺ(ݐ)൯ from 
Equation 3.  
 Global best velocity vector among all :ࡳ_࢏ࢂ 
particles computed using ܿଶݎଶ൫݃ݐݏ݁ܤ − ௜ܺ(ݐ)൯ from 
Equation 3. 
࢖,࢏ࢂ :࢏ࢂ  ࡸ_࢏ࢂ +  .from Equation 3  ࡳ_࢏ࢂ +
૚ࢉ  × ࢘૚: Velocity Scaling Factor1 
૛ࢉ  × ࢘૛: Velocity Scaling Factor2 
 
The state of three particles along their costs is 
shown in Figure 8. The initial velocities of all the 
particles are initialized to 0. It can also be observed 
that after initialization the best particle is ܲܽ0 ݈݁ܿ݅ݐݎ 
and the local best solution of each particle is their 
current solution. We will now go through a few 
iterations to see how the particles evolve. 
 ௜ܸ_ܮ is a set of swaps that are required by a particle 
to move from its current position to its local best 
position. ௜ܸ_ܩ is a set of swaps that are required by a 
particle to move from its current position to the global 
best position. ௜ܸ_ܮ and ௜ܸ_ܩ are scaled by ܿଵ × ଵ and ܿଶݎ  ×  ଶ, respectively so that the new position may lieݎ 
somewhere between particle’s own best solution and 
the global best solution, which helps in exploiting the 
current and exploring the new solutions. Initially, 
| ௜ܸ_ܮ| =   ห ௜ܸ,௣ห = | ௜ܸ_ܩ| =  0  for all particles. After 
first iteration the particle’s state is shown in Figure 9. 
The I/O swaps and logic swaps are separated by “|” 
in the velocity vectors. The solutions shown in Figure 
9 are obtained by applying the swaps to the initial 
state of particles. Similarly, the solutions in Figure 10 
were computed by applying the swaps mentioned 
before to the grids of Figure 9.  
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Figure 8. Particles initial state. 
 
For ܲܽ0 ݈݁ܿ݅ݐݎ in iteration 1, all the velocity 
components are zero because initially, Particle 0 
holds the global best solution. Therefore, no 
swaps are applied to ܲܽ0 ݈݁ܿ݅ݐݎ and its 
position/solution remains unchanged after 1st 
iteration. For ܲܽ1 ݈݁ܿ݅ݐݎ In iteration 1 velocity 
component w.r.t the global best solution is 
present and other velocity components are zero. 
The | ௜ܸ_ܩ| = 15, for ܲܽ1 ݈݁ܿ݅ݐݎ, multiplying it by 
the scaling constant ߜ = 0.24 implies | ௜ܸ_ܩ| = 2. 
Therefore, only two swaps are applied to the 
initial state of ܲܽ1 ݈݁ܿ݅ݐݎ to get the new solution 
shown in Figure 9. Hence, after first iteration the 
global best particle is 2 with cost = 5. 
 
Regarding the personal best solutions, for ܲܽ1 ݈݁ܿ݅ݐݎ it remains unchanged because its own 
solution did not change in iteration 1. ܲܽݏ′1 ݈݁ܿ݅ݐݎ 
personal best solution is changed as its ݐݏ݋ܥோௐ =6 < ூ௡௜௧௜௔௟ݐݏ݋ܥ   =  which happens to ,2 ݈݁ܿ݅ݐݎܽܲ .7
be that the global best solution has also the new 
personal best solution. 
 
After 2nd iteration ܲܽ0 ݈݁ܿ݅ݐݎ has the global best 
solution with ݐݏ݋ܥோௐ = 4, therefore its personal 
best solution is also updated. ܲܽݏ′1 ݈݁ܿ݅ݐݎ personal 
best solution is also updated with ݐݏ݋ܥோௐ = ோௐݐݏ݋ܥ new solution has ݏ′2 ݈݁ܿ݅ݐݎܽܲ .5 = 9 ௉௥௘௩௜௢௨௦ݐݏ݋ܥ < = 5, therefore its personal best 
solution is not updated, despite its current position 
is changed which has a greater cost as can be 
observed in Figure 10. 
 
After 3rd iteration, the global solution did not 
improve, therefore, it remains unchanged as 
achieved after 2nd iteration. Only the personal best 
solutions of ܲܽ1 ݈݁ܿ݅ݐݎ and ܲܽ2 ݈݁ܿ݅ݐݎ are updated, 
because their new cost is 4. The, personal best for ܲܽ0 ݈݁ܿ݅ݐݎ does not change as its ݐݏ݋ܥோௐ = 6 ௉௥௘௩௜௢௨௦ݐݏ݋ܥ < = 4. 
 
The discussed example is run for 10 iterations. 
The best solution is achieved after 9 iterations. The 

results produced after 9th iteration are shown in 
Figure 12. The best cost/buffer count achieved 
after 10 iterations is 1. 
 
5. Implementation results 
 
To evaluate the efficacy of the proposed algorithm 
ISCAS’89 benchmarks [14] have been used. These 
benchmark circuits are mapped to NOR-based gates, 
like CMOL layout, they consists only of NOR gates 
[7]. PSO is implemented using Perl scripting 
language and executed on a machine with 1.6 GHz 
Intel dual-core processor. The objective function used 
to solve the CMOL cell assignment problem is to 
reduce the number of buffers. Figure 13 shows the 
change in cost per iteration for few benchmark 
circuits of varying space complexity. Figure 14 
explains the effect of buffers minimization cost 
function on the Manhattan distance.  
 
Table 1 shows the number of cells (i.e., NOR/INV 
logic gates), inputs and outputs of benchmark 
circuits used; Area (Tiles) is the area used by CM 
OLFPGA CAD 1.0 tool [15], while Area (ܴ݊݉ݑ݈݋ܥ× ݓ݋) is the area used in GA [17], MA [18], 
LRMA [19] and PSO. The algorithm is executed for 
a specific number of iterations. The heuristics 
stops when all the gate violations are removed or 
solution does not improve for a certain number of 
iterations. In this work if the global best solution in 
PSO algorithm does not improve for 10 iterations 
then SA is invoked for each particle and after that 
the PSO algorithm resumes. The PSO is stopped if 
the overall best solution does not improve for 50 
iterations and results are reported. The median 
value of results obtained from 20 runs for each 
circuit is reported where each run uses different 
seeds for random numbers. 
 
The connectivity radius is set to ݎ =  12. The 
parameters are ܿଵ = ܿଶ = 1.5 and ߱ = 0.9 → 0.1 in 
PSO algorithm. SA used in our approach has initial 
temperature ܶ = 1.2, = ߙ =  0.9 and ܭ௠௔௫ =  50. 
Comparison is performed with CMOL FPGA CAD 
1.0, GA, MA and LRMA. All algorithms except 
CMOL FPGA CAD 1.0 have population size of 24 
and stopping criteria is based on non-improving 
cost in 50 iterations. Table 2 shows the final results 
obtained for ISCAS’89 benchmarks when ݎ =  12; 
computation time (ܶ݅݉݁) is in seconds, (݂ݑܤ) 
shows the number of inserted buffers to satisfy 
CMOL connectivity domain. 
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Figure 9. Iteration1. Swaps are applied to the initial state of particles. 
 

 
 

Figure 10. Iteration 2. Swaps are applied to the solutions in iteration 1. 
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V0,p = {(12,-1),(13,-1),(4,2) |               
           (9,18), (16,15)}   
Vi_L = {} 

Vi_G = {} 

 

V0  =  {(12,-1),(13,-1),(4,2) |  
            (9,18), (16,15)} 
       

       

       

       

       

       

       

       

       

       

       

       

10 -1 11 -1 6   

0 17 8 14 2   

3 7 16 18 -1   

12 15 9 -1 5   

-1 1 13 -1 4   

Particle 0 
Cost = 6 

 

        

V1,p =  {(2,10),(12,4),(11,-1) | (16,17), 
            (8,7),(14,16)} 

 

Vi_L = {} 

Vi_G  =  {(2,10),(1,13),(-1,6),(3,0),(-1,4), 
               (0,3),(13,5) | (16,17),(-1,7), 
               (18,15),(15,17),(18,16)} 

δ = C2r2 = 0.43   

δ × Vi_G = {(2,10),(1,13),(-1,6) |  
                   (16,17), (-1,7)} 
        

V1 = {(2,10),(12,4),(11,-1),(2,10), 
(1,13),(-1,6) | (16,17), (8,7), 
(14,16),(17,16),(-1,8)} 

        

        

        

        

        

        

        

        

2 4 -1 13 6    

3 17 -1 14 -1    

0 7 18 9 -1    

10 15 16 8 1    

5 -1 11 -1 12    

Particle 1 
Cost = 5 

 

       

V2,p = {(5,10),(0,11),(1,6),(-1,0) |               
           (16,17),(-1,8),(9,14),(18,7)} 
       

Vi_L = {(5,10),(0,11),(1,6),(-1,0),            
            (10,5) | (16,17) ,(-1,8),     
            (9,14), (18,7)} 
       

 
Vi_G = {(5,10),(0,11),(1,6),(-1,0), 
             (-1,3),(-1,5) | (16,17),       
             (-1,8),(9,14),(18,7),(-1,15)} 

γ = c1r1 = 0.82 
δ = c2r2 = 1.5 
       

γ×Vi_L = {(5,10),(0,11),(1,6),(-1,0)} 

       

δ×Vi_G ={(5,10),(0,11),(1,6),(-1,0), 
                (-1,3),(-1,5),(-1,-1),(3,-1) |        
                (16,17),(-1,8), (9,14),    
                (18,7),(-1,15), (16,17),         
                (15,15), (9,14)} 
       

V2  =  V2,p + γ×Vi_L  + δ×Vi_G 

       

       

10 12 11 13 6   

0 17 8 9 4   

3 18 -1 14 -1   

-1 16 7 15 5   

-1 -1 1 2 -1   

Particle 2 
Cost = 4 

 

 

 

 
Figure 11. Iteration 3. Swaps are applied to the solutions in iteration 2. 

 
 

Global Best        
10 12 11 13 1  -1 12 11 13 1  10 12 11 13 1 
0 17 8 7 4  0 17 8 9 4  0 16 8 9 4 
3 9 15 18 -1  3 16 7 14 10  3 18 15 14 -1 
-1 16 14 -1 5  2 18 15 -1 5  -1 17 7 -1 5 
-1 6 -1 -1 2  6 -1 -1 -1 -1  -1 -1 6 2 -1 
Particle 0  Particle 1  Particle 2 
Cost = 1  Cost = 1  Cost = 3 

 
Figure 12. Final arrangement of cells in grid after 10 iterations. 
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Circuits Cells Gates Inputs Outputs Area (Tiles) Area (Row × Column) AU% (Tiles) AU%

s27 19 8 7 4 64 (2 × 2) 25 (5 × 5) 18.75 32

s208 136 109 18 9 256 (4 × 4) 169 (13 × 13) 48.05 64.5

s298 122 85 17 20 256 (4 × 4) 144 (12 × 12) 48.83 59.03

s344 180 130 24 26 400 (5 × 5) 196 (14 × 14) 43.5 66.33

s349 184 134 24 26 400 (5 × 5) 196 (14 × 14) 26.5 68.37

s382 175 124 24 27 400 (5 × 5) 196 (14 × 14) 43.25 63.27

s386 164 138 13 13 400 (5 × 5) 196 (14 × 14) 54.75 70.41

s400 188 137 24 27 400 (5 × 5) 196 (14 × 14) 47.25 69.9

s420 299 248 34 17 400 (5 × 5) 361 (19 × 19) 75 68.7

s444 187 136 24 27 400 (5 × 5) 196 (14 × 14) 52.5 69.39

s510 304 266 25 13 - 361 (19 × 19) - 73.68

s526 273 222 24 27 576 (6 × 6) 324 (18 × 18) 57.12 68.52

s641 302 206 54 42 576 (6 × 6) 676 (26 × 26) 50.17 30.47

s713 321 225 54 42 - 676 (26 × 26) - 33.28

s820 447 400 23 24 - 529 (23 × 23) - 75.61

s832 454 407 23 24 - 529 (23 × 23) - 76.94

s838 606 507 66 33 - 676 (26 × 26) - 75

s1196 675 613 31 31 - 729 (27 × 27) - 84.09

s1238 724 662 31 31 - 784 (28 × 28) - 84.44  
 

Table 1. ISCAS’89 Benchmarks showing the number of cells to be placed including gates, inputs and  
outputs area is the size of CMOL 2-D grid. AU% is the fraction of utilized cells in CMOL grid. 

 
 
 

Delay Time Time Buf Time Buf Time Buf Time Buf Time Buf Time Buf

s27 9 1 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0

s208 18 3 1.12 0 0.12 0 0.1 0 0.01 0 4 0 0.01 0

s298 13 7 0.17 0 0.11 0 0.09 0 0.01 0 4 0 0.01 0

s344 20 8 0.57 0 0.29 0 0.16 0 4 0 8 0 2.12 0

s349 20 7 0.49 0 0.28 0 0.18 0 4 0 12 0 2.67 0

s382 13 7 1.6 0 0.38 0 0.32 0 5 0 13 1 3.52 0

s386 16 11 1.05 0 0.33 0 0.34 0 6 0 11 2 3.62 0

s400 15 8 2.12 1 0.4 0 0.34 0 55 0 20 1 2.08 0

s420 20 8 8.5 1 3.41 0 1.57 0 62 0 40 4 20.11 0

s444 17 9 1.86 2 0.4 0 0.34 0 80 0 65 1 4.39 0

s510 - - 16.56 2 7.56 0 3.42 0 77 4 60 8 40.23 0

s526 16 13 9.75 5 4.36 0 1.59 0 220 4 185 6 30.25 0

s641 25 8 82.66 15 39.4 4 22.02 0 82 10 220 37 120.77 0

s713 - - 52.84 34 30.11 3 41.77 2 135 8 250 39 120.73 2

s820 - - 77.52 41 61.71 10 54.09 6 215 15 400 126 250.32 4

s832 - - 69.27 54 60.17 11 63.77 4 245 19 350 115 180.37 6

s838 - - 201.37 50 85.62 7 100.4 4 479 29 600 70 250.12 4

s1196 - - 234.88 84 208.15 19 179.47 9 450 73 705 188 301.47 1

s1238 - - 268.92 121 267.34 31 353 9 502 93 1500 240 450.61 27

Average - - 54.28 22 40.53 5 43.31 2 137.95 13 234.05 44 93.86 3

Hybrid (PSO+SA)
Circuits

CMOL CAD 1.0 GA [17] MA[18] LRMA SA PSO

 
 

Table 2. ISCAS’89 comparison with CMOL CAD, GA, MA and LRMA – (r = 12). 
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PSO solutions are more effective than those of 
CMOL CAD 1.0 in terms of delay and area utilization. 
The last two columns of Table 1 show that cell-based 
CMOL architecture has better area utilization ܷܣ% 
than that of tile-based architecture. Table 2 indicates 
that the tile-based approach is the most time 
consuming and the least effective in timing delay, it 
also fails to place big circuits. 
 
The results achieved by hybrid PSO/SA algorithm, 
as shown in Table 2, are better than GA and MA in 
terms of number of inserted buffers for all 
benchmark circuits. It can also be observed that the 
overall solution quality and computation time by SA 
and PSO just for larger circuits is not encouraging. 
Hybrid algorithm produced results that are better in 
all performance comparison criteria. Comparing to 
LRMA, better results are achieved in terms of delay 
and number of inserted buffers for all benchmark 
circuits except for 832ݏ and1238ݏ, as they require 
more buffers in the proposed approach. The 
average time taken by PSO/SA hybrid is more as 
compared to other techniques due to the compute 
intensive operations of updating the velocity and 
position of each particle. 
 

 
 

Figure 13. Change in cost per iteration  
of few benchmarks. 

 

 
 

Figure 14. Change in cost and Manhattan  
distance per iteration of s1196.blif. 

6. Conclusions 
 
This paper discussed the implementation of a 
hybrid particle swarm optimization and simulated 
annealing heuristic for CMOL nano-hybrid cells 
assignment. The behavior of the problem was 
analyzed and a technique was engineered that 
utilized the exploration and exploitation features of 
PSO to solve the problem. In the proposed 
algorithm the PSO operators, like velocity and 
position update were defined in the context of 
assignment problem. Due to the inherent greedy 
nature of PSO algorithm, simulated annealing (SA) 
was used in hybrid to escape local minima 
entrapment. Implementation results illustrated that 
the proposed scheme achieved better results for 
most of the benchmarks as compared to other 
published techniques in previous studies.  
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