

653Journal of Applied Research and Technology

Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a
PSO/SA Hybrid Algorithm

Sadiq M. Sait*1, 2, Ahmad T. Sheikh1, Aiman H. El-Maleh1

1 Department of Computer Engineering.
2 Center for Communications and IT Research, Research Institute.
King Fahd University of Petroleum & Minerals.
Dhahran-31261, Saudi Arabia.
*sadiq@kfupm.edu.sa

ABSTRACT
In recent years, substantial advancements have been made in VLSI technology. With the introduction of CMOL
(Cmos\nanowire\MOLecular Hybrid), higher circuit densities are possible. In CMOL there is an additional layer of nanofabric
on top of CMOS stack. Nanodevices that lie between overlapping nanowires are programmable and can implement any
combinational logic using a netlist of NOR gates. The limitation on the length of nanowires put a constraint on the
connectivity domain of a circuit. The gates connected to each other must be within a connectivity radius; otherwise an extra
buffer is inserted to connect them. Particle swarm optimization (PSO) has been used in a variety of problems that are NP-
hard. PSO compared to the other iterative heuristic techniques is simpler to implement. Besides, it delivers comparable
results. In this paper, a hybrid of PSO and simulated annealing (SA) for solving the cell assignment in CMOL, an NP-hard
problem, is proposed. The proposed method takes advantage of the exploration and exploitation factors of PSO and the
intrinsic hill climbing feature of SA to reduce the number of buffers to be inserted. Experiments conducted on ISCAS’89
benchmark circuits and a comparison with other heuristic techniques, are presented. Results showed that the proposed
hybrid algorithm achieved better solution in terms of buffer count in reasonable time.

Keywords: CMOL, combinatorial optimization, search heuristics, nanofabric, assignment, VLSI, hybrid heuristics.

1. Introduction

In recent years, we have witnessed a tremendous
development in the field of VLSI. We have seen the
appearance of novel nanodevices, nanocircuits,
nano-crossbar arrays [1], manufactured by nano-
imprint lithography [2], CMOS/nano co-design
architectures [3], and, their applications [5], [1].
Likharev and his colleagues [3], [4], developed the
idea of CMOL (Cmos\nanowire\MOLecular Hybrid)
for nanoelectronic devices. One of the problems in
CMOL based circuit design is cell assignment.

The CMOL cell assignment problem can be modeled
as a special case of cell assignment problem on an
FPGA, where one of the main objectives is to reduce
the overall wire length. Whereas in CMOL, the goal is
to place the connected cells close to each other with
the constraint that these connected cells lie within a
given radius from each other. Considerable amount
of work has been done to tackle this problem.
Strukov et al. proposed a deterministic algorithm [15],
suitable for small circuits. Non-deterministic heuristic
algorithms such as tabu search, particle swarm and

simulated annealing have been widely used to solve
a multitude of combinatorial optimization problems
[20, 21, 22]. Xia Y. et al used genetic algorithm (GA)
and laid the foundation to solve CMOL cell
assignment problem using iterative heuristic
algorithms [17]. The GA was able to find good
solutions within acceptable time for circuits of varying
complexity. Memetic algorithm (MA) an improvement
of GA proposed by Z. Chu et al. [18], is a combination
of GA and simulated annealing (SA). Another recent
improvement proposed by Y. Xia et al. [19] combines
Lagrangian relaxation (LR) technique and MA, hence
the name LRMA, to solve the CMOL cell assignment
problem. Higher quality solutions in terms of
computational time and solution quality are reported
with LRMA as compared to both GA and MA.

Ideas on combining strengths of different heuristics
have been around for some time. In the past SA
has been used effectively as a hybrid with other
algorithms like tabu search (TS), genetic algorithm
(GA) and simulated evolution (SimE) [11]. The

Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm, Sadiq M. Sait et al./653‐664

Vol. 11, October 2013 654

basic idea of hybridization is to enhance the
strengths and compensate for the weaknesses of
two or more complementary approaches [10].

In this paper, the CMOL cell assignment problem
using a hybrid of particle swarm optimization
(PSO) technique and the simulated annealing (SA)
algorithm is investigated. PSO, developed by
Kennedy & Eberhart in 1995, is based on the
social behavior of birds, fish and bees [12]. The
strength of PSO lies in its simplicity of
implementation and in achieving comparable and
sometimes better results as compared to other
heuristic techniques. PSO has been widely used in
problems such as bandwidth minimization [9],
FPGA cell assignment [13] [8] and others.

In PSO, each particle carries a complete solution
whose global best and the particle’s personal best
solution are updated only when the current solution
improves, and this may lead to entrapment in a local
minima. Simulated annealing (SA) algorithm is
another widely used iterative heuristic algorithm.
The powerful feature of SA is its intrinsic hill
climbing capability. Therefore, SA is used in
conjunction with the PSO algorithm for local minima
avoidance. The proposed technique in [8], [9] is
adopted for the CMOL cell assignment problem.

The rest of the paper is organized as follows: In
Section 2, CMOL architecture is discussed.
Problem formulation is given in Section 3. Section
4, discusses how PSO and SA are utilized to solve
this problem. Implementation results are given in
Section 5 and conclusions are drawn in Section 6.

2. CMOL FPGA architecture

CMOL, developed by Likharev et al. [3], consists of
nanodevices. These nanodevices can be any two
terminal nanodevices, e.g., “latching switch” based
on molecules with two metastable internal states.
Figure 1 shows the basic structure of CMOL. The
nanodevices are sandwiched between the two
levels of perpendicular nano-imprinted nanowires.
Logic functions are created by a combination of
CMOS inverters and diode-like nanodevices as
shown in Figure 2. In each cell there is a CMOS
inverter, and nanowires are aligned such that one
of their ends receive signal from the output of
CMOS inverters. Those nanowires are OR’ed
together with nanowires aligned with another (in

orthogonal direction) according to the nanodevice
configurations to give a wired-OR logic. This
OR’ed signal goes to the inverter’s input, which is
on the CMOS stack to implement the required
NOR-INV logic. For example, in Figure 2, X, Y and
F are three signals connected with the three
grayed cells’ output pins. With the shown nanowire
connections (lines) and “ON” nanodevices (dots),
the logic expression is ܨ = ܺ + ܻതതതതതതതതത.

Figure 1. Generic CMOL circuit schematic side view.

This cell assignment task poses a challenge for
larger circuits. In this paper our goal is to
investigate this problem as an optimization
problem, while reducing the buffers, and finding a
solution in reasonable CPU time.

Figure 2. CMOL FPGA configuration example [4].

3. Problem formulation

In computer-aided design (CAD) of digital systems,
the assignment of cells to a given set of locations
(in order to minimize a given cost function) is an
NP-hard problem [11]. Even the simplest case of
one dimensional assignment problem is hard to
solve. In a 2-D array of n locations there are as
many as the following arrangements for placing ݉
cells.
 ܵ = ݊(݊ − 1)(݊ − 2) … (݊ − ݉ + 1) (1)

Where ݉ could be in multiples of thousands. Due
to the aforementioned complexity and overtime

Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm, Sadiq M. Sait et al. /653‐664

Journal of Applied Research and Technology 655

work, designers have turned their attention to
develop heuristic techniques to solve the assignment
problem in order to find an optimal solution in
polynomial time.

Given a collection of NOR/INV gates, and the
collection of nets (the set of ports to be connected
together), the CMOL cell assignment problem
consists of finding suitable locations for each gate
under the constraint of connectivity domain and a
given cost function. Formally the problem can be
restated as: For a set of gates ܩ = ݃1, ݃2, ݃3, … ݃݉ and a set of netlists Γ ,ଵߛ = ,ଶߛ ,ଷߛ … ௜ = {fan - ini & fan - outi} of giߛ ௠ whereߛ
and given a set of slots or locations ܮ = ܮଵ, ,ଶܮ ,ଷܮ … , ≥ ݉ ௡ whereܮ ݊, the assignment
problem is to assign each ௜݃ to a unique ܩ ߳
location ܮ௝ such that the objective is optimized.
Positions are defined by the coordinate values (ݔ௜, that represent ܩ ௝) and the subset ofݕ
inputs/outputs may be pre-assigned to fixed
locations or constrained to certain positions.

Each CMOL cell can implement one inverter or
one NOR gate with multiple fan-in, however,
complying with connectivity constraint can be
substantially harder if gates of high fan-in are
allowed. Each CMOL cell can be connected to one
of its proximity cell members; any violation of this
constraint would impose further processing (i.e.,
buffer insertion) to satisfy connectivity. However,
such process would cause more congestion to the
already congested CMOL circuit and could result in
substantial increase of timing delay.
Mathematically, the “Connectivity Domain” can be
defined as follows; given a gate and its netlist (௜݃ , ௜ , for any gate ݃௞ܮ ௜) placed in locationߛ ௜, the following Inequalityߛ and ݃௞ in the netlist ܩ⊇
should be satisfied.
,௝ܮ൫ݐݏ݅݀ ௞൯ܮ ≤ (2) ݎ

Where ܮ௞ is the location of ݃௞, ݀݅ݐݏ is the
Manhattan distance, and ݎ is CMOL connectivity
radius. The objective of CMOL cell assignment is
to satisfy the constraint inequality (2), and to
minimize the distance between connected gates in
circuit G. Failing to comply with CMOL constraint
will result in an implementation that has more
delay and area requirements.

4. Particle swarm optimization (PSO)

PSO which was proposed by Kennedy and
Eberhart [13] is utilized in this work. A PSO
algorithm consists of two main components,
velocity and position. The velocity determines the
rate at which a particle can change its position. In
PSO, the non-determinism comes from the velocity
component only. The discrete PSO as proposed by
the original authors consists of the following two
main equations:
 ௜ܸ(ݐ + 1) = ߱ × ௜ܸ + ܿଵݎଵ൫ݐݏ݁ܤ݌௜ − ௜ܺ(ݐ)൯ +ܿଶݎଶ൫݃ݐݏ݁ܤ − ௜ܺ(ݐ)൯ (3)
 ௜ܺ(ݐ + 1) = ௜ܺ(ݐ) + ௜ܸ(ݐ + 1) (4)

In the above equations, ߱ is a constant to give
certain weight to previous velocity, ܿଵ and ܿଶ are
arbitrary constants, ݎଵ and ݎଶ are random variables
of uniform distribution, ݐݏ݁ܤ݌௜ is the best solution of
particle ݅ so far, ݃ݐݏ݁ܤ is the overall global best
solution among all particles. The ݐݏ݁ܤ݌௜ of a
particle is the exploitation factor, while ݃ݐݏ݁ܤ helps
in the exploration of solution space. This way,
particles try not only to come closer to their own
best solution, but also to the global best solution
with a certain probability and weight factor.

In the proposed discrete PSO algorithm, each
particle holds a complete solution which in our
case is a 2-D grid representation of the
assignment. For example, if the dimensions of a
grid are 5 × 5, then the position of a particle is an
assignment of cells to this grid of 25 elements with
I/Os on the outer boundary of grid. Empty locations
are denoted by −1. In the proposed formulation,
the velocity is represented as a sequence of swaps
[8] [9]. For example, velocity ܸ = (2, 5); (4, 7) represents swaps between cells 2 & 5
and 4 & 7, respectively. Swaps can only be
performed between cells of the same types i.e., I/O
with an I/O and Gate with a Gate. Hence, two
velocity vectors are maintained and updated.
Swapping between different logic types is not
allowed. The current position of a particle ௜ܺ
denotes the assignment of all cells within a grid.
During initialization, the position ௜ܺ of each particle
is initialized randomly and the velocity ௜ܸ is zero to
control the total number of swaps, | ௜ܸ| = 0 → ௠ܸ௔௫.

Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm, Sadiq M. Sait et al./653‐664

Vol. 11, October 2013 656

The algorithm used in this work is shown in Figure
3. In the proposed algorithm [۱܍ܜܝܘܕܗ ூܸ/ை௜ , ௅ܸ௢௚௜௖௜]
and [۱܍ܜܝܘܕܗ ூܺ/ை௜ , ܺ௅௢௚௜௖௜] are computed using
Equations (3) and (4) for each particle ݅
respectively. [۱ܜ܋ܝܚܜܛܖܗ ܺ௜ = [ܺூ/ை௜ , ܺ௅௢௚௜௖௜]] means
constructing a new grid based on updated
positions of ܺூ/ை௜ and ܺ௅௢௚௜௖௜ .

Simulated annealing (SA) algorithm [11] is shown
in Figure 4. It is invoked for each particle ݅ if the
global best solution does not improve for 10
iterations. It works by constructing a list of cells
violating the connectivity constraint and then
randomly swapping them with cells in the grid. The
decision to make a swap is based on the condition
given at line 15 in Figure 4, where “random” is a
uniformly distributed random number. Hence,
using SA, the movements of individual cell can be
controlled in order to search for better solution.

Algorithm: Discrete PSO
Require: ܵ݁ݖ݅ܵ ݉ݎܽݓ, ,ݎ݁ݐܫݔܽܯ ݈݁݅ܨݐݑ݌݊ܫ
1: Read Input File
2: Initialize the Swarm
ݎ݁ݐ݅ :3 = 1
4: while (݅ݎ݁ݐ ≤ do (ݎ݁ݐܫݔܽܯ
5: for all (ܲܽݏ݈݁ܿ݅ݐݎ ݅) do
6: Compute ூܸ/ை௜ , ௅ܸ௢௚௜௖௜

7: Compute ܺூ/ை௜ , ܺ௅௢௚௜௖௜

8: Construct ܺ௜ = [ܺூ/ை௜ , ܺ௅௢௚௜௖௜]
9: if (ܿ݊݋݅ݐݑ݈݋ܵݐ݊݁ݎݎݑ௜ < ௜)thenݐݏ݁ܤ݌
௜ݐݏ݁ܤ݌ :10 = ௜݊݋݅ݐݑ݈݋ܵݐ݊݁ݎݎݑܿ
11: end if
12: end for
௜௧௘௥ݐݏ݁ܤ݃ :13 = arg ݉݅݊∀௜(ݐݏ݁ܤ݌௜, (௜௧௘௥ିଵݐݏ݁ܤ݃
ݎ݁ݐ݅ :14 + +
15: if (݈݋ܵ ݈ܾܽ݋݈ܩ. (ݎ݁ݐ݅ 10 ݎ݋݂ ݀݁ݒ݋ݎ݌݉݅ ݐ݋݊
16: Invoke SA ∀ Particle ݅

17: end if
18: end while

Figure 3. PSO algorithm.

4.1 PSO operators

In the context of cell assignment problem, the
operators used in the discrete PSO equations 3
and 4, need to be defined. In order to subtract two
vectors, let us say ܺ − ܻ, the result of subtraction

will be the number of swaps required so that vector ܻ becomes vector ܺ. Therefore, the velocity is
defined as the number of required swaps.

The complexity of this operation increases
significantly when the problem size increases.

Algorithm: Simulated annealing
Require: ܵ଴, ܶ, ெܶூே
1: ܵ଴: Initial Solution
2: ܵே௘௪: New Solution
3: ܶ: Initial Temperature
4: ெܶூே: Terminating Temperature
 Cooling Coefficient :ߙ :5
 List of cells violating radius criterion :܄ :6
7: while (ܶ ≥ ெܶூே) do
8: ݇ = 0
9: while (݇ ≤ ݇௠௔௫) do
= ݐݏ݋ܥ :10 ;(଴ܵ)ݐݏ݋ܥ
11: ܵோௐ = ݏ݈݈݁ܿ_݋ݓݐ_݂݋_݌ܽݓݏ_݉݋݀݊ܽݎ ∈ ܄
ோௐݐݏ݋ܥ :12 = (ோௐܵ)ݐݏ݋ܥ
13: ∆ℎ = ோௐݐݏ݋ܥ − ݐݏ݋ܥ
݉݋݀݊ܽݎ :14 = ,0)݀݊ܽݎ 1)

15: if ((∆ℎ < 0) or (݀݊ܽݎ. < ݁ି∆೓೅)) then
ݐݏ݋ܥ :16 = ோௐݐݏ݋ܥ
17: ܵ଴ = ܵோௐ
18: ݇ + +
19: end if
20: end while
21: ܶ = ܶߙ
22: end while

Figure 4. Simulated annealing (SA) algorithm.

 X Y Velocity

6 -1 0 -1 2 1 3
1
2

1
3

5 (1,6)

-1 7
1
8

9 4 -1 7
1
8

9
-
1

 (12,0)

-1
1
7

1
4

1
5

1 - -1
1
7

1
8

1
5

6 = (5,2)

1
0

8 -1
1
6

3
1
0

1
4

-1
1
6

4 (-1,4)

1
1

1
3

5
1
2

-
1

1
1

-1 2 0
-
1

 (8,14)

Cost(X) = 5 Cost(Y) = 7 (-1,3)

Figure 5. Subtraction b/w two grids and

their resultant velocity vector.

Therefore, the size of the resulting velocity is
clamped to ௠ܸ௔௫ to limit the number of swaps from
becoming too large. The subtract operator is

Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm, Sadiq M. Sait et al. /653‐664

Journal of Applied Research and Technology 657

explained in Figure 5, as can be observed,
|ܸ| = 6 ⇒ six swaps have to be applied on grid Y
so that ܻ = ܺ. The velocity vector contains the
sequence of swaps between corresponding cells.

Multiplying a velocity ݒ by a constant ܿ implies
increasing the number of swaps if constant is > 1.
Otherwise, the velocity vector is truncated. Then, if ܿ > 1, then new swaps are added to the end of ݒ
to increase its length by |ݒ| − ܿ. The swaps to be
added are extracted from the top of ݒ. Similarly, if ܿ < 1, then swaps are truncated until the size of
resulting velocity ≈ ݒ × ܿ. The multiplication of
velocity vector with a constant is illustrated in
Figure 6 and the addition of two velocity vectors is
shown in Figure 7.

Adding velocity to the current position ௜ܺ is performed
by applying the swaps as given in the velocity vector to
the position vector. The position vector ௜ܺ denotes the
locations of all cells within a grid. For example, the
arrangement of cells in two grids in Figure 5 can be a
position vector ௜ܺ of a particle. Swaps are applied in
the same order as given in the velocity vector.

4.2 PSO problem formulation

In the proposed DPSO algorithm, the position vector ܺ is divided into two vectors ௟ܺ௢௚௜௖ and ܺூ/ை. This is to
make sure that no swaps can occur between an I/O
and a logic Gate. Corresponding to it, the velocity
vector ܸ is also split into two vectors i.e., ௟ܸ௢௚௜௖ and ܺூ/ை. To update the position and velocity of each
particle, Equations 3 and 4 are applied twice with
operators defined in Subsection 4.1. To evaluate the
fitness of particle’s new position, both ௟ܺ௢௚௜௖ and ܺூ/ை
are used to construct the complete position ܺ.

In CMOL cell assignment problem, the solution is
an arrangement of logic cell in two dimensional
grid. The grid is constructed by computing the
number of CMOL cells required for each
benchmark circuit. The outer cells of the grid are
reserved for I/O pins and the inner cells are
reserved for logic gates. This is to make sure that
the movements of cells are constrained to their
respective domains. After initialization, the
contents of each cell in a grid denote the I/O
pin/logic gate number it is holding. Empty locations
can be denoted by -1. An example of a sample
solution is shown in Figure 5 for a small circuit.

4.3 Cost evaluation

The objective of cell assignment is to find cell
assignments in a way such that all connections are
satisfied. In CMOL assignment, as explained in
Section 3, each cell has a connectivity radius and if

 V 1.5×V V

 (1,6) (1,6) (1,6) 0.5×V

 (12,0) (12,0) (12,0) (1,6)

1.5× (5,2) = (5,2) 0.5× (5,2) = (12,0)

 (-1,4) (-1,4) (-1,4) (5,2)

 (8,14) (8,14) (8,14)

 (-1,3) (-1,3) (-1,3)

 (1,6)

 (12,0)

 (5,2)

Figure 6. Scaling velocity by a constant.

 V1+V2

V1 (1,6)

(1,6) V2 (12,0)

(12,0) (17,7) (5,2)

(5,2) + (8,9) = (-1,4)

(-1,4) (10,2) (17,7)

 (8,9)

 (10,2)

Figure 7. Addition of two velocity vectors.

A cell is out of the radius then, an extra buffer(s)
need to be inserted. Given that the cells in CMOL
are already connected via pre-assembled
nanowires, the optimization problem is to place the
cells in order to eliminate the need to insert extra
buffers. Therefore, a measure to capture the
overall quality of the solution has to be defined.
One simple approach is to calculate the number of
nets that violate the connectivity domain constraint.
The cost of each gate ݃ ߳ ܩ is given in Equation
5(b), where the cost of overall circuit is the sum of
the costs of individual gates.
௜ܥ = ∑ ௜,௝௝ఢఊ(௜)ݑ (5a)

Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm, Sadiq M. Sait et al./653‐664

Vol. 11, October 2013 658

௜,௝ݑ = ൜1 ݂݅ ݀݅ݐݏ௜,௝ > (5b) ݁ݏ݅ݓݎℎ݁ݐ݋ 0ݎ

4.4 Particle’s evolution

Each particle is randomly initialized with a unique
solution. The best solution achieved by a particle
during the course of iterations is its personal best
solution. Global best solution is a best solution
among the personal best solutions of all particles.
Therefore, initially, each particle will have a different
cost value. To change its position, each particle will
either increase or decrease its velocity (number of
swaps) in order to non-deterministically get closer to
its personal best and the global best solution. As
illustrated, the velocity in our case is the number of
swaps required by a particle to move from one state
to the other. Because the problem at hand requires
the cells to be placed within each other’s
connectivity radius before making any swap, cost
will be evaluated, as mentioned in Subsection 4.3,
before and after the swap. If the cost is improved or
in case the new cost is the same as the previous
one, then if overall Manhattan distance is reduced
swap is performed, otherwise, it will not. This way,
only those swaps that will improve the cost function
are made and others are ignored.

The intrinsic greedy nature of PSO algorithms
allow them to converge very quickly, which may
lead to local minima entrapment. Moreover, the
PSO algorithm lacks the individual learning
capability based on the fitness score of each
cell. To address this simulated annealing (SA),-
based local search algorithm is employed. SA
has been used for a variety of problems and has
its strength in the simplicity of its
implementation. If SA is run for very long time,
then it will give an optimal solution. In this
algorithm ܭ௠௔௫ number of random swaps
between I/Os or logic gates for each particle’s
solution are performed. To avoid local minima,
the SA algorithm will accept a solution of

increased cost with probability ݁ି∆೓೅ . The initial
temperature ܶ is set to be 1.2. The cooling
process is implemented using the relation ௡ܶ௘௪ = ߙ ௢ܶ௟ௗ. The value of ߙ is fixed at 0.9.

4.5 An illustrative example

Let us consider an example of a simple benchmark
circuit to elaborate the working principle of the

proposed algorithm. For the sake of simplicity, our
example has the following parameters, No. of
Particles = 3, ܿଵ = ܿଶ = 1.5, ߱ = 0.2 and
connectivity radius = 3. The considered circuit
s27.blif has Total Gates = 19, Logic Gates = 11,
I/O Gates = 8 and Grid Size = 5 × 5. The
abbreviations used in the example are shown
below along their definitions.
 ,݅ Previous velocity vector of particle :࢖,࢏ࢂ
computed using ߱ × ௜ܸ from Equation 3.
 ݅ Personal best velocity vector of particle :ࡸ_࢏ࢂ
computed using ܿଵݎଵ൫ݐݏ݁ܤ݌௜ − ௜ܺ(ݐ)൯ from
Equation 3.
 Global best velocity vector among all :ࡳ_࢏ࢂ
particles computed using ܿଶݎଶ൫݃ݐݏ݁ܤ − ௜ܺ(ݐ)൯ from
Equation 3.
࢖,࢏ࢂ :࢏ࢂ ࡸ_࢏ࢂ + .from Equation 3 ࡳ_࢏ࢂ +
૚ࢉ × ࢘૚: Velocity Scaling Factor1
૛ࢉ × ࢘૛: Velocity Scaling Factor2

The state of three particles along their costs is
shown in Figure 8. The initial velocities of all the
particles are initialized to 0. It can also be observed
that after initialization the best particle is ܲܽ0 ݈݁ܿ݅ݐݎ
and the local best solution of each particle is their
current solution. We will now go through a few
iterations to see how the particles evolve.
 ௜ܸ_ܮ is a set of swaps that are required by a particle
to move from its current position to its local best
position. ௜ܸ_ܩ is a set of swaps that are required by a
particle to move from its current position to the global
best position. ௜ܸ_ܮ and ௜ܸ_ܩ are scaled by ܿଵ × ଵ and ܿଶݎ × ଶ, respectively so that the new position may lieݎ
somewhere between particle’s own best solution and
the global best solution, which helps in exploiting the
current and exploring the new solutions. Initially,
| ௜ܸ_ܮ| = ห ௜ܸ,௣ห = | ௜ܸ_ܩ| = 0 for all particles. After
first iteration the particle’s state is shown in Figure 9.
The I/O swaps and logic swaps are separated by “|”
in the velocity vectors. The solutions shown in Figure
9 are obtained by applying the swaps to the initial
state of particles. Similarly, the solutions in Figure 10
were computed by applying the swaps mentioned
before to the grids of Figure 9.

Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm, Sadiq M. Sait et al. /653‐664

Journal of Applied Research and Technology 659

Figure 8. Particles initial state.

For ܲܽ0 ݈݁ܿ݅ݐݎ in iteration 1, all the velocity
components are zero because initially, Particle 0
holds the global best solution. Therefore, no
swaps are applied to ܲܽ0 ݈݁ܿ݅ݐݎ and its
position/solution remains unchanged after 1st
iteration. For ܲܽ1 ݈݁ܿ݅ݐݎ In iteration 1 velocity
component w.r.t the global best solution is
present and other velocity components are zero.
The | ௜ܸ_ܩ| = 15, for ܲܽ1 ݈݁ܿ݅ݐݎ, multiplying it by
the scaling constant ߜ = 0.24 implies | ௜ܸ_ܩ| = 2.
Therefore, only two swaps are applied to the
initial state of ܲܽ1 ݈݁ܿ݅ݐݎ to get the new solution
shown in Figure 9. Hence, after first iteration the
global best particle is 2 with cost = 5.

Regarding the personal best solutions, for ܲܽ1 ݈݁ܿ݅ݐݎ it remains unchanged because its own
solution did not change in iteration 1. ܲܽݏ′1 ݈݁ܿ݅ݐݎ
personal best solution is changed as its ݐݏ݋ܥோௐ =6 < ூ௡௜௧௜௔௟ݐݏ݋ܥ = which happens to ,2 ݈݁ܿ݅ݐݎܽܲ .7
be that the global best solution has also the new
personal best solution.

After 2nd iteration ܲܽ0 ݈݁ܿ݅ݐݎ has the global best
solution with ݐݏ݋ܥோௐ = 4, therefore its personal
best solution is also updated. ܲܽݏ′1 ݈݁ܿ݅ݐݎ personal
best solution is also updated with ݐݏ݋ܥோௐ = ோௐݐݏ݋ܥ new solution has ݏ′2 ݈݁ܿ݅ݐݎܽܲ .5 = 9 ௉௥௘௩௜௢௨௦ݐݏ݋ܥ < = 5, therefore its personal best
solution is not updated, despite its current position
is changed which has a greater cost as can be
observed in Figure 10.

After 3rd iteration, the global solution did not
improve, therefore, it remains unchanged as
achieved after 2nd iteration. Only the personal best
solutions of ܲܽ1 ݈݁ܿ݅ݐݎ and ܲܽ2 ݈݁ܿ݅ݐݎ are updated,
because their new cost is 4. The, personal best for ܲܽ0 ݈݁ܿ݅ݐݎ does not change as its ݐݏ݋ܥோௐ = 6 ௉௥௘௩௜௢௨௦ݐݏ݋ܥ < = 4.

The discussed example is run for 10 iterations.
The best solution is achieved after 9 iterations. The

results produced after 9th iteration are shown in
Figure 12. The best cost/buffer count achieved
after 10 iterations is 1.

5. Implementation results

To evaluate the efficacy of the proposed algorithm
ISCAS’89 benchmarks [14] have been used. These
benchmark circuits are mapped to NOR-based gates,
like CMOL layout, they consists only of NOR gates
[7]. PSO is implemented using Perl scripting
language and executed on a machine with 1.6 GHz
Intel dual-core processor. The objective function used
to solve the CMOL cell assignment problem is to
reduce the number of buffers. Figure 13 shows the
change in cost per iteration for few benchmark
circuits of varying space complexity. Figure 14
explains the effect of buffers minimization cost
function on the Manhattan distance.

Table 1 shows the number of cells (i.e., NOR/INV
logic gates), inputs and outputs of benchmark
circuits used; Area (Tiles) is the area used by CM
OLFPGA CAD 1.0 tool [15], while Area (ܴ݊݉ݑ݈݋ܥ× ݓ݋) is the area used in GA [17], MA [18],
LRMA [19] and PSO. The algorithm is executed for
a specific number of iterations. The heuristics
stops when all the gate violations are removed or
solution does not improve for a certain number of
iterations. In this work if the global best solution in
PSO algorithm does not improve for 10 iterations
then SA is invoked for each particle and after that
the PSO algorithm resumes. The PSO is stopped if
the overall best solution does not improve for 50
iterations and results are reported. The median
value of results obtained from 20 runs for each
circuit is reported where each run uses different
seeds for random numbers.

The connectivity radius is set to ݎ = 12. The
parameters are ܿଵ = ܿଶ = 1.5 and ߱ = 0.9 → 0.1 in
PSO algorithm. SA used in our approach has initial
temperature ܶ = 1.2, = ߙ = 0.9 and ܭ௠௔௫ = 50.
Comparison is performed with CMOL FPGA CAD
1.0, GA, MA and LRMA. All algorithms except
CMOL FPGA CAD 1.0 have population size of 24
and stopping criteria is based on non-improving
cost in 50 iterations. Table 2 shows the final results
obtained for ISCAS’89 benchmarks when ݎ = 12;
computation time (ܶ݅݉݁) is in seconds, (݂ݑܤ)
shows the number of inserted buffers to satisfy
CMOL connectivity domain.

Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm, Sadiq M. Sait et al./653‐664

Vol. 11, October 2013 660

Figure 9. Iteration1. Swaps are applied to the initial state of particles.

Figure 10. Iteration 2. Swaps are applied to the solutions in iteration 1.

Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm, Sadiq M. Sait et al. /653‐664

Journal of Applied Research and Technology 661

V0,p = {(12,-1),(13,-1),(4,2) |
 (9,18), (16,15)}
Vi_L = {}

Vi_G = {}

V0 = {(12,-1),(13,-1),(4,2) |
 (9,18), (16,15)}

10 -1 11 -1 6

0 17 8 14 2

3 7 16 18 -1

12 15 9 -1 5

-1 1 13 -1 4

Particle 0
Cost = 6

V1,p = {(2,10),(12,4),(11,-1) | (16,17),
 (8,7),(14,16)}

Vi_L = {}

Vi_G = {(2,10),(1,13),(-1,6),(3,0),(-1,4),
 (0,3),(13,5) | (16,17),(-1,7),
 (18,15),(15,17),(18,16)}

δ = C2r2 = 0.43

δ × Vi_G = {(2,10),(1,13),(-1,6) |
 (16,17), (-1,7)}

V1 = {(2,10),(12,4),(11,-1),(2,10),
(1,13),(-1,6) | (16,17), (8,7),
(14,16),(17,16),(-1,8)}

2 4 -1 13 6

3 17 -1 14 -1

0 7 18 9 -1

10 15 16 8 1

5 -1 11 -1 12

Particle 1
Cost = 5

V2,p = {(5,10),(0,11),(1,6),(-1,0) |
 (16,17),(-1,8),(9,14),(18,7)}

Vi_L = {(5,10),(0,11),(1,6),(-1,0),
 (10,5) | (16,17) ,(-1,8),
 (9,14), (18,7)}

Vi_G = {(5,10),(0,11),(1,6),(-1,0),
 (-1,3),(-1,5) | (16,17),
 (-1,8),(9,14),(18,7),(-1,15)}

γ = c1r1 = 0.82
δ = c2r2 = 1.5

γ×Vi_L = {(5,10),(0,11),(1,6),(-1,0)}

δ×Vi_G ={(5,10),(0,11),(1,6),(-1,0),
 (-1,3),(-1,5),(-1,-1),(3,-1) |
 (16,17),(-1,8), (9,14),
 (18,7),(-1,15), (16,17),
 (15,15), (9,14)}

V2 = V2,p + γ×Vi_L + δ×Vi_G

10 12 11 13 6

0 17 8 9 4

3 18 -1 14 -1

-1 16 7 15 5

-1 -1 1 2 -1

Particle 2
Cost = 4

Figure 11. Iteration 3. Swaps are applied to the solutions in iteration 2.

Global Best
10 12 11 13 1 -1 12 11 13 1 10 12 11 13 1
0 17 8 7 4 0 17 8 9 4 0 16 8 9 4
3 9 15 18 -1 3 16 7 14 10 3 18 15 14 -1
-1 16 14 -1 5 2 18 15 -1 5 -1 17 7 -1 5
-1 6 -1 -1 2 6 -1 -1 -1 -1 -1 -1 6 2 -1
Particle 0 Particle 1 Particle 2
Cost = 1 Cost = 1 Cost = 3

Figure 12. Final arrangement of cells in grid after 10 iterations.

Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm, Sadiq M. Sait et al./653‐664

Vol. 11, October 2013 662

Circuits Cells Gates Inputs Outputs Area (Tiles) Area (Row × Column) AU% (Tiles) AU%

s27 19 8 7 4 64 (2 × 2) 25 (5 × 5) 18.75 32

s208 136 109 18 9 256 (4 × 4) 169 (13 × 13) 48.05 64.5

s298 122 85 17 20 256 (4 × 4) 144 (12 × 12) 48.83 59.03

s344 180 130 24 26 400 (5 × 5) 196 (14 × 14) 43.5 66.33

s349 184 134 24 26 400 (5 × 5) 196 (14 × 14) 26.5 68.37

s382 175 124 24 27 400 (5 × 5) 196 (14 × 14) 43.25 63.27

s386 164 138 13 13 400 (5 × 5) 196 (14 × 14) 54.75 70.41

s400 188 137 24 27 400 (5 × 5) 196 (14 × 14) 47.25 69.9

s420 299 248 34 17 400 (5 × 5) 361 (19 × 19) 75 68.7

s444 187 136 24 27 400 (5 × 5) 196 (14 × 14) 52.5 69.39

s510 304 266 25 13 - 361 (19 × 19) - 73.68

s526 273 222 24 27 576 (6 × 6) 324 (18 × 18) 57.12 68.52

s641 302 206 54 42 576 (6 × 6) 676 (26 × 26) 50.17 30.47

s713 321 225 54 42 - 676 (26 × 26) - 33.28

s820 447 400 23 24 - 529 (23 × 23) - 75.61

s832 454 407 23 24 - 529 (23 × 23) - 76.94

s838 606 507 66 33 - 676 (26 × 26) - 75

s1196 675 613 31 31 - 729 (27 × 27) - 84.09

s1238 724 662 31 31 - 784 (28 × 28) - 84.44

Table 1. ISCAS’89 Benchmarks showing the number of cells to be placed including gates, inputs and
outputs area is the size of CMOL 2-D grid. AU% is the fraction of utilized cells in CMOL grid.

Delay Time Time Buf Time Buf Time Buf Time Buf Time Buf Time Buf

s27 9 1 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0

s208 18 3 1.12 0 0.12 0 0.1 0 0.01 0 4 0 0.01 0

s298 13 7 0.17 0 0.11 0 0.09 0 0.01 0 4 0 0.01 0

s344 20 8 0.57 0 0.29 0 0.16 0 4 0 8 0 2.12 0

s349 20 7 0.49 0 0.28 0 0.18 0 4 0 12 0 2.67 0

s382 13 7 1.6 0 0.38 0 0.32 0 5 0 13 1 3.52 0

s386 16 11 1.05 0 0.33 0 0.34 0 6 0 11 2 3.62 0

s400 15 8 2.12 1 0.4 0 0.34 0 55 0 20 1 2.08 0

s420 20 8 8.5 1 3.41 0 1.57 0 62 0 40 4 20.11 0

s444 17 9 1.86 2 0.4 0 0.34 0 80 0 65 1 4.39 0

s510 - - 16.56 2 7.56 0 3.42 0 77 4 60 8 40.23 0

s526 16 13 9.75 5 4.36 0 1.59 0 220 4 185 6 30.25 0

s641 25 8 82.66 15 39.4 4 22.02 0 82 10 220 37 120.77 0

s713 - - 52.84 34 30.11 3 41.77 2 135 8 250 39 120.73 2

s820 - - 77.52 41 61.71 10 54.09 6 215 15 400 126 250.32 4

s832 - - 69.27 54 60.17 11 63.77 4 245 19 350 115 180.37 6

s838 - - 201.37 50 85.62 7 100.4 4 479 29 600 70 250.12 4

s1196 - - 234.88 84 208.15 19 179.47 9 450 73 705 188 301.47 1

s1238 - - 268.92 121 267.34 31 353 9 502 93 1500 240 450.61 27

Average - - 54.28 22 40.53 5 43.31 2 137.95 13 234.05 44 93.86 3

Hybrid (PSO+SA)
Circuits

CMOL CAD 1.0 GA [17] MA[18] LRMA SA PSO

Table 2. ISCAS’89 comparison with CMOL CAD, GA, MA and LRMA – (r = 12).

Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm, Sadiq M. Sait et al. /653‐664

Journal of Applied Research and Technology 663

PSO solutions are more effective than those of
CMOL CAD 1.0 in terms of delay and area utilization.
The last two columns of Table 1 show that cell-based
CMOL architecture has better area utilization ܷܣ%
than that of tile-based architecture. Table 2 indicates
that the tile-based approach is the most time
consuming and the least effective in timing delay, it
also fails to place big circuits.

The results achieved by hybrid PSO/SA algorithm,
as shown in Table 2, are better than GA and MA in
terms of number of inserted buffers for all
benchmark circuits. It can also be observed that the
overall solution quality and computation time by SA
and PSO just for larger circuits is not encouraging.
Hybrid algorithm produced results that are better in
all performance comparison criteria. Comparing to
LRMA, better results are achieved in terms of delay
and number of inserted buffers for all benchmark
circuits except for 832ݏ and1238ݏ, as they require
more buffers in the proposed approach. The
average time taken by PSO/SA hybrid is more as
compared to other techniques due to the compute
intensive operations of updating the velocity and
position of each particle.

Figure 13. Change in cost per iteration
of few benchmarks.

Figure 14. Change in cost and Manhattan
distance per iteration of s1196.blif.

6. Conclusions

This paper discussed the implementation of a
hybrid particle swarm optimization and simulated
annealing heuristic for CMOL nano-hybrid cells
assignment. The behavior of the problem was
analyzed and a technique was engineered that
utilized the exploration and exploitation features of
PSO to solve the problem. In the proposed
algorithm the PSO operators, like velocity and
position update were defined in the context of
assignment problem. Due to the inherent greedy
nature of PSO algorithm, simulated annealing (SA)
was used in hybrid to escape local minima
entrapment. Implementation results illustrated that
the proposed scheme achieved better results for
most of the benchmarks as compared to other
published techniques in previous studies.

Acknowledgments

The authors acknowledge King Fahd University of
Petroleum & Minerals for all the support, and Dr. William
N. N. Hung and Mr. Zhufei Chu for providing ISCAS’89
benchmark files. The authors also would like to thank Mr.
Abdalrahman M. Arafeh for his help and support.

References

[1] Philip J. Kuekes, Duncan R. Stewart, and R. Stanley
 Williams. The crossbar latch: logic value storage,
restoration, and inversion in crossbar circuits. Journal of
Applied Physics, 97:03430115, 2005.

[2] D. J. Resnick. Imprint lithography for integrated circuit
fabrication. Journal of Vacuum Science & Technology B:
Microelectronics and Nanometer Structures, 21:2624, 2003.

[3] K. K. Likharev and D. V. Strukov. CMOL: devices,
circuits, and architectures. In G Cuniberti et al., editors,
Introduction to Molecular Electronics, pages 447477.
Springer, Berlin, 2005.

[4] Dmitri B. Strukov and Konstantin K. Likharev. CMOL
FPGA: a reconfigurable architecture for hybrid digital
circuits with two terminal nanodevices. Nanotechnology,
16(6):888900, 2005.

[5] Oˆ. Tu¨rel, J. H. Lee, X. Ma, and Konstantin K.
Likharev. Architectures for nanoelectronic
implementation of artificial neural networks: new results.
Neurocomputing, 64:271283, 2005.

[6] D. Strukov and K. Likharev. A reconfigurable
architecture for hybrid CMOS/nanodevice circuits. In
FPGA06, pages 131140, Monterey, California, USA, 2006.

Cell Assignment in Hybrid CMOS/Nanodevices Architecture Using a PSO/SA Hybrid Algorithm, Sadiq M. Sait et al./653‐664

Vol. 11, October 2013 664

[7] William N. N. Hung, Changjian Gao, Xiaoyu Song,
and Dan Hammerstrom. Defect Tolerant CMOL Cell
Assignment via Satisfiability. IEEE Sensors Journal,
8(6):823830, June 2008.

[8] Mohammed El-Abd, Hassan Hassan, Mohab Anis,
Mohamed S. Kamel, and Mohamed Elmasry. 2010.
Discrete cooperative particle swarm optimization for
FPGA assignment. Appl. Soft Computing 10, 1 (January
2010), 284-295.

[9] Lim, A., Lin, J., & Xiao, F. (2007). Particle Swarm
Optimization and Hill Climbing for the bandwidth
minimization problem. Applied Intelligence, 26(3), 175-182.

[10] F. Glover, J. P. Kelly, and M. Laguna. Genetic algorithms
and tabu search: Hybrids for optimization. Computers and
Operations Research, 22(1):111–134, 1995.

[11] Sait, S.M., Youssef, H.: Iterative Computer
Algorithms with Applications in Engineering: Solving
Combinatorial Optimization Problems. IEEE Computer
Society Press, California (1999).

[12] J. Kennedy, R.C. Eberhart, Particle swarm
optimization, in: Proceedings of the IEEE International
Conference on Neural Networks, vol. 4, 1995, pp.
19421948.

[13] Kennedy, J.; Eberhart, R.C.”A discrete binary
version of the particle swarm algorithm”, IEEE
International Conference on Systems, Man, and
Cybernetics, 1997.

[14] Brglez, F., Bryan, D., Kozminski, K.: Combinational
profiles of sequential benchmark circuits. In: Circuits and
Systems, 1989, IEEE International Symposium on, pp.
1929 1934 vol.3 (1989). DOI 10.1109/ISCAS.1989.100747.

[15] Strukov, D.B., Likharev, K.K.: A reconfigurable
architecture for hybrid CMOS/Nanodevice circuits. In:
Proceedings of the 2006. ACM/SIGDA 14th international
symposium on Field programmable gate arrays, FPGA
06, pp. 131140. ACM, New York, NY, USA (2006).

[16] Andrew Lim, Jing Lin, and Fei Xiao. 2007. Particle
Swarm Optimization and Hill Climbing for the bandwidth
minimization problem. Applied Intelligence 26, 3 (June
2007), 175-182. DOI=10.1007/s10489-006-0019-x
http://dx.doi.org/10.1007/s10489-006-0019-x.

[17] Xia Y., Chu Z., Hung, W. N., Wang, L., Song, X.:
CMOL cell assignment by genetic algorithm. In:
NEWCAS Conference (NEWCAS), 2010 8th IEEE
International, pp. 25 28 (2010). DOI
10.1109/NEWCAS.2010.5603746.

[18] Chu Z., Xia Y., Hung, W.N., Wang L., Song X.: A
memetic approach for nanoscale hybrid circuit cell
mapping. In: Digital System Design: Architectures,
Methods and Tools (DSD), 2010 13th Euromicro
Conference on, pp. 681 688 (2010). DOI
10.1109/DSD.2010.22.

[19] Xia Y., Chu Z., Hung W., Wang L., Song,X.: An
integrated optimization approach for nano-hybrid circuit
cell mapping. Nanotechnology, IEEE Transactions on
PP (99), 1 (2011). DOI 10.1109/TNANO.2011.2131153.

[20] A. E. Ylmaz F. Yaman. Impacts of genetic algorithm
parameters on the solution performance for the uniform
circular antenna array pattern synthesis problem.
Journal of Applied Research and Technology, 8(3):378-
394, December, 2010.

[21] Nareli Cruz-Cortes Ricardo Barron-Fernandez
Jesus A. Alvarez-Cedillo Gerardo A. Laguna-Sanchez,
Mauricio Olguin-Carbajal. Comparative study of parallel
variants for a particle swarm optimization algorithm
implemented on a multithreading GPU. Journal of
Applied Research and Technology, 7(3):292-309,
December, 2009.

[22] A. Miranda-Vitela F. Lara-Rosano J. L. Perez-Silva,
A. Garces-Madrigal. Dynamic fuzzy logic functor. Journal
of Applied Research and Technology, 6(2):84-94,
August, 2008.

