SciELO - Scientific Electronic Library Online

 
vol.11 issue31Conocimiento pedagógico del concepto de “reacción química” en profesores universitarios mexicanosModelación molecular: estrategia didáctica sobre la constitución de los gases, la función de los catalizadores y el lenguaje de la química author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de investigación educativa

Print version ISSN 1405-6666

RMIE vol.11 n.31 Ciudad de México Oct./Dec. 2006

 

Sección temática

Investigación temática

Ideas acerca del movimiento del péndulo: un estudio desde una perspectiva de modelación *

María Trigueros Gaisman** 

** Profesora del Departamento de Matemáticas del Instituto Tecnológico Autónomo de México (ITAM). Río Hondo número 1, colonia Progreso Tizapán, CP 01080, México, Distrito Federal. CE: trigue@itam.mx.


Resumen

La perspectiva de la modelación brinda elementos para diseñar una metodología que promueve la reflexión de los estudiantes acerca de los conceptos importantes de la física y sobre su relación con las matemáticas. En este trabajo se reporta una experiencia enmarcada en un contexto específico de modelación. Se estudia el movimiento oscilatorio, en particular, el del péndulo. Los resultados obtenidos ponen de manifiesto las concepciones de los alumnos relativas a este tipo de movimiento, a las fuerzas, a la descomposición de vectores en componentes así como a la variación. También se reportan algunos ejemplos de la evolución conceptual de los participantes en el proyecto.

Palabras clave: enseñanza de las ciencias; física; matemáticas; educación superior; proceso del pensamiento; modelación; México

Abstract

A modeling perspective offers elements for designing a methodology to promote students’ reflection on the important concepts of physics and their relation to mathematics. This study reports on an experience within a specific context of modeling. A study is made of oscillatory movement, and in particular, of pendulum movement. The results reveal students’ conceptions of this type of movement, the forces, the decomposition of vectors in components, and variation. Some examples of the conceptual evolution of the project’s participants are also provided.

Key words: science teaching; physics; mathematics; higher education; thought process; modeling; Mexico

Texto completo disponible sólo en PDF.

Referencias

Aliprantis, A. D. y Carmona, G. (2003). “Introduction to an economic problem: a models and modelling perspective”, en Lesh y Doerr (eds.) Beyond constructivism: Models and modelling perspectives on mathematics problem solving, learning and teaching, Mahawah, NJ: Lawrence Erlbaum Associates, pp. 255-265. [ Links ]

Almudí, J.M. (2002). Introducción del campo magnético en primer ciclo de universidad: Dificultades de aprendizaje y propuesta de enseñanza alternativa de orientación constructivista, tesis doctoral, Departamento de Física Aplicada I, Universidad del País Vasco. [ Links ]

Beichner, R.J y Saul, J.M. (2003). “Introduction to the SCALE-UP (Student-Centered Activities for Large Enrollment Undergraduate Programs) Project”, Proceedings of the International School of Physics: Enrico Fermi, Varenna. [ Links ]

Buckley, B.C.; Boulter, C. y Gilbert, J. (1997). Towards a typology of models for science education, Reino Unido: Faculty of Education and Community Studies, The University of Reading. [ Links ]

Carey, S. y Smith, C. (1993). “On understanding the nature of scientific knowledge”, Educational Psychologist, 28(3), 235-251. [ Links ]

Cartier, J. (2000). “Assessment of explanatory models in genetics: Insights into Students’ Conceptions of Scientific Models”, Report núm. 98-1, NCISLA/Mathematics & Science, Madison:University of Wisconsin [ Links ]

Czudkova, L. y Musilova, J. (2000). “The pendulum: A atumbling block of secondary school mechanics”, Physics Education 35(6), 428-435. [ Links ]

Denny, M. (2002). “The pendulum clock”, European Journal of Physics, 23(4), 449-458. [ Links ]

Dori, Y.J. y Belcher, J. (2004). “How does technology-enabled active learning affect undergraduate students’ understanding of electromagnetism concepts?” The Journal of the Learning Sciences 14(2). [ Links ]

Fazio, C.; Guastella, I.; Tarantino, G. (2005). “Designing and validating a teaching/learning sequence about elastic waves propagation; the role of pedagogical tools”, Proceedings of ESERA 2005 Conference, vol V, Barcelona, pp. 633-636. [ Links ]

Fazio, C.; Giangalanti, G. y Sperandeo-Mineo, R. (2002). “Modeling phenomena in various experimental fields: the framework of negative and positive feedback systems”, en Michelini y Cobal (eds.) Developing Formal Thinking in Physics, Forum Editrice, Udine: Universidad de Udine. [ Links ]

Felipe, E. A.; Gallarreta, S. y Merino, G., (2005). “La modelización en la enseñanza de la biología del desarrollo”, Revista Electrónica de Enseñanza de las Ciencias, vol. 4, núm. 3. [ Links ]

Feurzeig, W. y Roberts, N. (1999). Modeling and simulation in science and mathematics education, Nueva York: Springer. [ Links ]

Giere, R. (1988). Explaining science: A cognitive approach, Chicago: University of Chicago Press. [ Links ]

Gil, D. et al. (1999) “¿Tiene sentido seguir distinguiendo entre aprendizaje de conceptos, resolución de problemas de lápiz y papel y realización de prácticas de laboratorio?”, Enseñanza de las Ciencias, 17, 311-320. [ Links ]

Gil, D. y Martínez Torregrosa, J. (1984) “Problem solving in physiscs: A critical analysis”, Research on Physics Education, París: CNRS editors. [ Links ]

Gilbert, J.K. (2002). “Moving between the modes of representation of a model in science education: some theoretical and pedagogic implications”, conferencia en Philosophical, Psychological, Linguistic Foundations for Language and Science Literacy Research, Victoria: University of Victoria. [ Links ]

Gilbert, J.K. y Boulter, C. (1995). “Stretching models too far”, Proceedings of the Annual Conference of the American Educational Research Association, San Francisco. [ Links ]

Gilbert, J.K.; Boulter, C. y Rutherford, M. (1998). “Models in explanations, part. 1: Horses for courses?” International Journal of Science Education, 20(1), 83-97. [ Links ]

Gilbert, J.K., y Osborne, R.J. (1980). “The use of models in science and science teaching”, European Journal of Science Education, 2(1), 3-13. [ Links ]

Gobert, J. y Buckley, B. (2000). “Introduction to model-based teaching and learning in science education”, International Journal of Science Education, 22(9), 891-894. [ Links ]

Gobert, J. y Clement, J. (1994). “Promoting causal model construction in science through student-generated diagrams”, Proceedings of the annual meting of the American Educational Research Association, Nueva Orleans. [ Links ]

Goldin, G. A. (2004).”Representations in mathematical learning and problem solving” en English, L. (ed.) Handbook of international research in mathematics education, Mahawah, NJ: Lawrence Erlbaum Associates, pp. 517-547. [ Links ]

Grosslight, L., et al. (1991). “Understanding models and their use in science: Conceptions of middle and high school students and expert”, Journal of Research in Science Teaching, 28 (9), 799-822. [ Links ]

Guisasola, J. et al. (1998). “Interactive-engagement vs traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses,” Am J Phys, 66: 64-74. [ Links ]

Guisasola, J. et al. (2004). “La enseñanza universitaria de la física y las aportaciones de la investigación en didáctica de la física”, Revista Española de Física, 18 ( 2), 15-16. [ Links ]

Hake, R.R. (1998). “Interactive-engagement methods in introductory mechanics courses” (disponible en http://www.physics.indiana.edu/~sdi/IEM-2b.pdf).Links ]

Hake, R.R. (2002). “Lessons from the physics education reform effort,” Ecology and Society 2: 28-36. [ Links ]

Harrison, A. G. y Treagust, D. F. (1998). “Modeling in science lessons: Are there better ways to learn with models?”, School Science and Mathematics, 98(8), 420-429. [ Links ]

Harrison, A. y Treagust, D. (2000). “A typology of school science models”, International Journal of Science Education, 22 (9), 1011-1026. [ Links ]

Hoellwarth, C.; M. J. Moelter y R.D. Knight. (2005). “A direct comparison of conceptual learning and problem solving ability in traditional and studio style classrooms”, American Journal of Physics 73(5): 459-463. [ Links ]

Ingham, A. y Gilbert, J. (1991). “The use of analogal models by students of chemistry at higher educations level”, International Journal of Science Education, 13 (2), 193-202. [ Links ]

Islas, S. M. y Pesa, M. A., (2002). “The learning of modeling: a scientist vision”, en Michelini y Cobal (eds.) Developing Formal Thinking in Physics, Forum Editrice, Udine: Universidad de Udine . [ Links ]

Jaque, F. (1995) “Deficiencias en los conocimientos de la física al llegar a laUniversidad”, Tarbiya 10, 121-126. [ Links ]

Justi, R. y Gilbert, J. (1999). “A case of a historical science teaching: the use of hibrid models”, Science Education, 83 (2), 163-177. [ Links ]

Kelly, A. E., y Lesh, R. A. (2001). Reconsidering Design Experiments: 3 yr Research Program of the NSF. Santa Fe, NM. [ Links ]

Kitcher, P. (1984). “1953 and all that. A tale of two sciences”, The Philosophical Review, 93, 335-373. [ Links ]

Lehrer, R., y Schauble, L. (2000). “Modeling in mathematics and science”, en Glaser (ed.) Advances in instructional psychology: volume 5. Educational design and cognitive science, Nueva Jersey: Lawrence Erlbaum, pp. 101-159. [ Links ]

Lesh, R. et al. (2000) “Principles for developing thought revealing activities for students and teachers”, en Lesh y Kelly (eds.) Research design in Mathematics and Science Education, Mahawah, NJ: Lawrence Erlbaum Associates, pp. 647-664. [ Links ]

Lesh, R. y Doerr, H. M. (2003) “Foundations of a models and modeling perspective on mathematics teaching, learning and problem solving”, en Lesh y Doerr (eds.) Beyond constructivism: Models and modelling perspectives on mathematics problem solving, learning and teaching, Mahawah, NJ: Lawrence Erlbaum Associates, pp. 3-35. [ Links ]

Lesh, R. y English, L. (2005) “Trends in the evolution of models and modeling perspective on mathematical learning and problem solving”, International Reviews on Mathematical Education, 37(6), 487-489. [ Links ]

Lesh, R. y Kelly, A. (2000) “Multitiered teaching experiments”, en Lesh y Kelly (eds.) Research design in Mathematics and Science Education, Mahawah, NJ: Lawrence Erlbaum Associates, pp. 197-230. [ Links ]

Manabu, S. (2004). “The reproduction of scientific understanding about pendulum motion in the public”, Science and Education, 13(4 y 5), 473-492. [ Links ]

Mathews, M. R. (2004). “Idealization and Galileo’s pendulum discoveries: historical, philosophical and pedagogical considerations”, Science and Education, 13 (7), 689-715. [ Links ]

McClain, K. (2003) “Task analysis cycles as tools for supporting students’ mathematical development”, en Lesh y Doerr (eds.), Beyond constructivism: Models and modelling perspectives on mathematics problem solving, learning and teaching, Mahawah, NJ: Lawrence Erlbaum Associates, pp. 175-191. [ Links ]

McDermott, L.C. (1990). “A perspective on teacher preparation in physics and other sciences: The need for special science courses for teachers”, American Journal of Physics 58, 734-742. [ Links ]

Mellar, H. y Bliss, J. (1994) “Introduction: modeling and education”, en Mellar et al. (eds.) Learning with Artificial Worlds: computer based modeling in the curriculum, Londres: The Falmer Press, pp. 1-7. [ Links ]

Michelsen, C. (2005). “Expanding the domain variables and functions in an interdisciplinary context between mathematics and physics”, Proceedings of the I International Symposium on Mathematics and its Connections to the Arts and the Sciences, Schwäbisch Gmünd: The University of Education, pp. 201-214. [ Links ]

Moreira, M. A. (1999). Modelos mentales, texto de apoyo núm. 8. Programa Internacional de Doctorado en Enseñanza de las Ciencias, Burgos: Universidad de Burgos. [ Links ]

Morgan, M. S. y Morrison, M., (1999). Models as mediators: Perspectives on natural and social science. Cambridge: Cambridge University Press. [ Links ]

National Council of teachers of Mathematics (2000). Principles and standards for school mathematics, Reston, VA. [ Links ]

Nersessian, N. (1992). “Constructing and instructing: the role of abstraction techniques” en Duschl y Hamilton (eds.) Creating and learning physics, philosophy of Sc. cognitive psychology and educational theory and practice, Nueva York, pp. 48-67. [ Links ]

Nola, R. (2004). “Pendula, models, constructivism and reality”, Science and Education, 13, 349-377. [ Links ]

Norman, D.A. (1983). “Some observations on mental models”, en Gentner y Stevens (eds.). Mental models, pp. 6-14. Hillsdale, NJ: Lawrence Erlbaum Associates. [ Links ]

Pintó, R. y Surinach, S. (2004a). Physics teacher education beyond 2000, París: Elsevier. [ Links ]

Pintó, R. y Surinach, S. (2004b). “Puede ayudar la investigación en enseñanza de la física a mejorar su docencia en la universidad?” Rev Bras Ens Fis, vol. 26, núm 3, San Pablo. [ Links ]

Pollock, S. (2005). “No single cause: learning gains, student attitudes, and the impacts of multiple effective reforms, 2004 Physics Education Research Conference: AIP Conference Proceeding, vol. 790; J. Marx , P. Heron, & S. Franklin, eds., pp. 137-140. [ Links ]

Schwarz, C.; Meyer, J. y Sharma, A., (2004). “Creating epistemologically-rich learning environments: computer modeling tools for pre-service elementary and middle school science teachers”, Proceedings of AERA Conference. [ Links ]

Schwarz, C., y White, B., (2003). “Developing a model-centered approach to science education”, Cognition and Instruction, 23(2) 265-205. [ Links ]

Scott, P. H. y Driver, R. H. (1998). “Learning about science teaching: perspectives from an action research project”, en Fraser y Tobin (eds.), International survey of mechanics test data for introductory physics courses, Am J. Physics, 66, 64-74. [ Links ]

Smith, C., Snir, J., y Grosslight, L. (1992). “Using conceptual models to facilitate conceptual change: The case of weight-density differentiation”, Cognition and Instruction, 9, 221-83. [ Links ]

Sperandeo-Mineo, R., (2002). “Learning phsysics via model construction”, en Michelini y Cobal (eds.) Developing Formal Thinking in Physics, Udine: Forum Editrice, Universidad de Udine. [ Links ]

Spitulnik, M., Krajcik, J., y Soloway, E., (1999). “Construction of models to promote scientific understanding” en Feurzeig y Roberts (eds.), Modeling and simulation in science and mathematics education, Nueva York: Springer-Verlag, pp. 70-94. [ Links ]

Trigueros, M. (2004). “Innovación en evaluación: un enfoque basado en la perspectiva de modelos”, Enseñanza de la Química, vol. 15, pp. 129-141. [ Links ]

Trigueros, M. y Carmona, G. (2006) “Nuevas perspectivas de evaluación”, en Rojano (ed.), La tecnología en la enseñanza de las ciencias y las matemáticas con Tecnología: Modelos de transformación de las prácticas y la interacción social en el aula, México: Subsecretaría de Educación Básica-SEP, pp. 231-241. [ Links ]

Viennot, L. (1998) “Former en didactique, former sur le contenu? Principes d’élaboration et éléments d’évaluation d’une formation en didactique de la physique en deuxième année d’IUFM”, Didaskalia 10, 75-96. [ Links ]

Wolman, W. (1984). “Models and procedures: teaching for transfer of pendulum knowledge”, Journal of Research in Science Teaching, 21(4), 399-415. [ Links ]

Zawojewski, J. S.; Lesh, R. y English, L. (2003). “A models and modelling perspective on the role of small group learning activities”, en Lesh y Doerr (eds.), Beyond constructivism: Models and modelling perspectives on mathematics problem solving, learning and teaching, Mahawah, NJ: Lawrence Erlbaum Associates, pp. 337-358. [ Links ]

* Esta investigación ha sido parcialmente apoyada por la Asociación Mexicana de Cultura, AC.

Recibido: 07 de Febrero de 2006; Aprobado: 21 de Junio de 2006

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons