SciELO - Scientific Electronic Library Online

vol.18 issue4EditorialOpen Framework for Web Service Selection Using Multimodal and Configurable Techniques author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.18 n.4 México Oct./Dec. 2014 

Simulating and Visualizing Real-Time Crowds on GPU Clusters


Benjamín Hernández1, Hugo Pérez1,2, Isaac Rudomin1, Sergio Ruiz3, Oriam de Gyves4, and Leonel Toledo4


1 Barcelona Supercomputing Center, Barcelona, Spain.,

2 Universitat Politècnica de Catalunya, Barcelona, Spain.

3 Tecnológico de Monterrey, Campus Ciudad de México, Mexico.

4 Tecnológico de Monterrey, Campus Estado de México, Mexico.,


Article received on 23/06/2014.
Accepted on 28/09/2014.



We present a set of algorithms for simulating and visualizing real-time crowds in GPU (Graphics Processing Units) clusters. First we present crowd simulation and rendering techniques that take advantage of single GPU machines. Then, using as an example a wandering crowd behavior simulation algorithm, we explain how this kind of algorithms can be extended for their use in GPU cluster environments. We also present a visualization architecture that renders the simulation results using detailed 3D virtual characters. This architecture is adaptable in order to support the Barcelona Supercomputing Center (BSC) infrastructure. The results show that our algorithms are scalable in different hardware platforms including embedded systems, desktop GPUs, and GPU clusters, in particular, the BSC's Minotauro cluster.

Keywords: Crowd simulation, visualization, HPC, GPU-clusters, real-time, embedded systems.





1. Durupinar, F., Allbeck, J., Pelechano, N., & Badler, N. I. (2008). Creating Crowd Variation with the OCEAN Personality Model. International joint conference on Autonomous agents and multiagent systems, AAMAS, pp. 1217-1220.         [ Links ]

2. Fugger, T., Randles, B., Stein, A., Whiting, W., & Gallagher, B. (2000). Analysis of Pedestrian Gait and Perception-Reaction at Signal-Controlled Crosswalk Intersections. Transportation Research Record, Vol. 1705, No. 1, pp. 20-25.         [ Links ]

3. Guy, S. J., Kim, S., Lin, M. C., & Manocha, D. (2011). Simulating heterogeneous crowd behaviors using personality trait theory. Symposium on Computer Animation, pp. 43.         [ Links ]

4. Hernández, B. & Rudomin, I. (2011). A rendering pipeline for real time crowds. GPU PRO 2. AK Peters.         [ Links ]

5. Kappadia, M., Pelechano, N., Guy, S., Allbeck, J., & Chrysanthou, Y. (2014). Simulating heterogeneous crowds with interactive behaviors. EG 2014 -Tutorials.         [ Links ]

6. Knoblauch, R., Pietrucha, M., & Nitzburg, M. (1996). Field Studies of Pedestrian Walking Speed and Start-Up Time. Transportation Research Record, Vol. 1538, No. 1, pp. 27-38.         [ Links ]

7. Laplante, J. N. & Kaeser, T. P. (2004). The Continuing Evolution of Pedestrian Walking Speed Assumptions. ITE Journal, Vol. 74, No. 9, pp. 32-40.         [ Links ]

8. Ma, K.-L. (2009). In situ visualization at extreme scale: Challenges and opportunities. Computer Graphics and Applications, IEEE, Vol. 29, No. 6, pp. 14-19.         [ Links ]

9. Molnar, S., Cox, M., Ellsworth, D., & Fuchs, H. (1994). A sorting classification of parallel rendering. IEEE Comput. Graph. Appl., Vol. 14, No. 4, pp. 23-32.         [ Links ]

10. Rahman, K., Ghani, N. A., Kamil, A. A., & Mustafa, A. (2012). Analysis of Pedestrian Free Flow Walking Speed in a Least Developing Country: A Factorial Design Study. Research Journal of Applied Sciences, Engineering & Technology, Vol. 4, No. 21, pp. 4299-4304.         [ Links ]

11. Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '87, ACM, New York, NY, USA, pp. 25-34.         [ Links ]

12. Richmond, P. & Romano, D. (2011). Template-Driven Agent-Based Modeling and Simulation with CUDA. In GPU Computing Gems Emerald Edition, Applications of GPU Computing Series, chapter 21. Morgan Kaufmann, 1 edition, 313-324.         [ Links ]

13. Rudomin, I., Hernández, B., de Gyves, O., Toledo, L., Rivalcoba, I., & Ruiz, S. (2013). Gpu generation of large varied animated crowds. Computación y Sistemas (CyS) special issue on Super-computing: Applications and Technologies, Vol. 17, No. 3.         [ Links ]

14. Rudomín, I., Millán, E., & Hernández, B. (2005). Fragment shaders for agent animation using finite state machines. Simulation Modelling Practice and Theory, Vol. 13, No. 8, pp. 741-751.         [ Links ]

15. Ruiz, S. & Hernández, B. (2014). Markov decision process and micro scenarios for crowd navigation and collision avoidance. Research in Computing Science, Vol. 74, pp. 103-116.         [ Links ]

16. Ruiz, S., Hernández, B., Alvarado, A., & Rudomín, I. (2013). Reducing memory requirements for diverse animated crowds. Proceedings of Motion on Games, MIG '13, ACM, New York, NY, USA, pp. 55:77-55:86.         [ Links ]

17. Toledo, L., De Gyves, O., & Rudomín, I. (2014). Hierarchical level of detail for varied animated crowds. The Visual Computer, Vol. 30, No. 6-8, pp. 949-961.         [ Links ]

18. Vigueras, G., Orduña, J. M., Lozano, M., & Cecilia, J. M. (2014). Accelerating collision detection for large-scale crowd simulation on multi-core and many-core architectures. Int. J. High Perform. Comput. Appl., Vol. 28, No. 1, pp. 33-49.         [ Links ]

19. Vigueras, G., Orduña, J. M., Lozano, M., & Jégou, Y. (2013). A scalable multiagent system architecture for interactive applications. Sci. Comput. Program., Vol. 78, No. 6, pp. 715-724.         [ Links ]

20. Wittek, P. & Rubio-Campillo, X. (2012). Scalable agent-based modelling with cloud hpc resources for social simulations. 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, pp. 355-362.         [ Links ]

21. Yilmaz, E., Isler, V., & Cetin, Y. Y. (2009). The virtual marathon: Parallel computing supports crowd simulations. IEEE Computer Graphics and Applications, Vol. 29, No. 4, pp. 26-33.         [ Links ]

22. Yu, H., Wang, C., Grout, R., Chen, J., & Ma, K.-L. (2010). In situ visualization for large scale combustion simulations. Computer Graphics and Applications, Vol. 30, No. 3, pp. 45-57.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License