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2Universitat Politècnica de Catalunya, Barcelona,
Spain

3Tecnológico de Monterrey, Campus Ciudad de México,
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Abstract. We present a set of algorithms for simulat-
ing and visualizing real-time crowds in GPU (Graphics
Processing Units) clusters. First we present crowd sim-
ulation and rendering techniques that take advantage
of single GPU machines. Then, using as an example
a wandering crowd behavior simulation algorithm, we
explain how this kind of algorithms can be extended for
their use in GPU cluster environments. We also present
a visualization architecture that renders the simulation
results using detailed 3D virtual characters. This archi-
tecture is adaptable in order to support the Barcelona
Supercomputing Center (BSC) infrastructure. The re-
sults show that our algorithms are scalable in different
hardware platforms including embedded systems, desk-
top GPUs, and GPU clusters, in particular, the BSC’s
Minotauro cluster.

Keywords. Crowd simulation, visualization, HPC, GPU-
clusters, real-time, embedded systems.

1 Introduction

Crowd simulations allow safe application of the
scientific method to certain subsets of the crowd
phenomena; they may aid in the analysis of dif-
ferent events related, for example, disease prop-
agation, building evacuations, traffic modeling, or
social evolution. The use of computational models
that describe the behavior of people is becoming
a necessity as the population increases in urban

areas. Prediction before, during, and after daily
crowd events may reduce associated logistic costs.

Large scale crowd simulations demand compu-
tational power and memory resources commonly
available in HPC (High Performance Computing)
platforms, they particularly require in situ visual-
ization, i.e., when significant computational power
for concurrent execution of simulation and visu-
alization is required. Coupling visualization with
simulation while it is running reduces bottlenecks
associated with storing, retrieving, and post pro-
cessing data in disk storage.

The aim of this paper is to show how an algo-
rithm implementing a wandering crowd behavior (a
simple behavior that is commonly used in crowd
simulations) can be extended for its use in GPU
(Graphics Processing Unit) cluster environments.
In addition, we present an adaptable visualization
architecture that renders in 3D the simulation re-
sults and supports three configurations: streaming,
in situ, and web.

2 Related Work

Reynolds [11] proposed the first known simulation
solution for large groups of entities with emergent
behavior being an extension of particle systems. It

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 651–664
ISSN 1405-5546

doi: 10.13053/CyS-18-4-2060



is based on three basic rules: separation, align-
ment, and cohesion. These rules keep together,
while going in a given direction and free of colli-
sions, a group of boids or bird-like objects. Such
model is an example of an individual-based or
agent-based model (ABM), and is used to simulate
the global behavior of a large number of interacting
autonomous individuals. ABMs can be applied
to different fields including biology, ecology, and
economics.

ABMs applied to crowd simulation require the
processing of each individual separately, thus it is
a good candidate for data-parallel processing. In
recent years, simulation systems have exploited
the computing power offered by the GPU, freeing
the CPU from tasks that are highly parallel and
based on a single instruction multiple data (SIMD)
model. Before the existence of programming mod-
els such as OpenCL or CUDA, GPUs were already
used for general purpose computing. For example,
Rudomin et al. [14] used Finite State Machines to
determine the behavior of agents, which are imple-
mented using fragment shaders in GLSL (OpenGL
Shading Language).

CUDA and OpenCL allowed developers to take
advantage of the GPU resources using a more
traditional C-language syntax. In addition, the
architecture of the GPU has evolved to meet the
demands of general computing as well as that of
graphics. In this sense, Yilmaz et al. [21] proposed
a fuzzy logic method implemented in CUDA for
simulation of crowds.

There is a large body of work in simulation and
visualization of crowds. Some of it uses the GPU.
Since much of this is beyond the scope of this
article, for a more comprehensive and recent dis-
cussion, consult Rudomin et al. [13] and Kappadia
et al. [5]. Both articles discuss several advanced
methods for simulating, generating, animating, and
rendering crowds.

Computer clusters have also been used for
crowd simulation and visualization. For exam-
ple, Vigueras et al. [19] describe an architec-
ture in which they distribute virtual world regions
between different machines called Action Servers
(AS), where each of them controls the actions
of agents located in their region. Agents are
assigned to a Client Process (CP) and maintain

constant communication with their AS. The server
also maintains communication with AS of adjacent
regions to query the state of the world in the border
areas. This system is complemented with Visual
Client Process or VCP for visualization. There can
be several VCP in the system to cover different
regions or subregions of the virtual world; the AS
sends only the information of the agents that will
be displayed by the VCP, which may receive infor-
mation from one or more AS. The initial algorithms
were implemented in CPU; however, in recent ver-
sions of the architecture, collision detection pro-
cess has been migrated to the GPU accelerating
the process considerably [18].

If one desires to have crowd simulations that
take advantage of the GPU or an HPC cluster
without needing to program from scratch, there
are a couple of frameworks available where a user
can define the characteristics of the simulation and
agents through configuration files usually in Exten-
sible Markup Language (XML) format. The most
popular is FLAME GPU [12], which maps formal
descriptions of agents into simulation code that
runs in the GPU. Another example is Pandora [20].
It is an open-source framework designed to create
and execute large-scale social simulations in HPC
environments. Pandora will automatically deal with
the details of distributing the computational load of
the simulation, so the researcher does not need
to have any additional knowledge about parallel or
distributed systems.

3 Single GPU Crowd Simulation and
Rendering

Interactive simulation and visualization of large and
varied crowds for single GPU systems is a very ac-
tive research topic. Current trends are focused on
semi-automatic crowd authoring (modeling and an-
imation), microscopic and macroscopic behavior,
and rendering. As solutions to these challenges,
we have developed methods for simulating crowds
of varied aspect and a diversity of behaviors.

In this section we present solutions for real-time
crowd simulation and rendering that take advan-
tage of single GPU systems.
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3.1 Accurate Psycho-physical Characteristics

Crowds are heterogeneous groups of people, in
which each person has individual and social prop-
erties, and interacts with others through different
means. It is not realistic to have a crowd com-
posed of only assertive male pedestrians around
30 years old; nevertheless, simulations do not typ-
ically include the characteristics that make pedes-
trians unique. We focus on the navigation of virtual
agents based on accurate psycho-physical char-
acteristics of a population. Individual properties
include physical and psychological characteristics;
social interaction properties include communica-
tion and group formation. Participants from a per-
ception study are able to identify the psycholog-
ical characteristics of the agents in a simulation
and experimental results show that agents with
these characteristics also change the behavior of
a crowd.

We can define physical characteristics as a per-
son’s body defining traits which are visually percep-
tible and generally can be measured. Age, gender,
height, weight, and fitness are examples of these
characteristics. These physical characteristics are
based on studies of real pedestrians [6, 2, 7, 10]
and are used to compute the maximum speed at
which a virtual agent is able to walk at any given
time.

We use the term psychological characteristics to
refer to the personality of a pedestrian. Personality
can be understood as a set of internal motivations
that make two people behave in different manners,
even if they share similar physical features. We use
the Eysenck 3-factor model, which categorizes the
personality of an individual according to three main
factors: Psychoticism, Extraversion, and Neuroti-
cism. An individual may tend to exhibit one of
these factors because of testosterone, serotonin,
and dopamine, respectively. Durupinar et al. [1]
and Guy et al. [3] studied similar approaches in
regard to the implications of adding psychological
characteristics to virtual agents. Figure 1 shows
a comparison of the three personalities that are
achieved using this method.

Fig. 1. Psychological comparison. The agent moves
through five groups in order to get to its destination. From
top to bottom: Aggressive agent, Assertive agent, and
Shy agent

3.2 Goal-Oriented Behavior

We now focus on a particular technique for solving
the Navigation problem involving embodied agents
within virtual environments. Our first observation
is that an agent, while moving through an environ-
ment, solves a sequential decision problem to find
a path that goes from its current configuration to
a goal, constructing a set of additive rewards as
it gets closer to its goal. This behavior can be
described by a Markov Decision Process [15].

Markov Decision Processes (MDP) may be
solved in stages by a single GPU in real time,
given that the partition of the navigable space is
coarse so that the MDP represents general paths
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for groups of agents [15]. We assign multiple re-
wards and penalties to cells in a partitioned naviga-
ble space to control agent Navigation. A finer grid
partition (Figure 2) allows for another algorithm to
handle Local Collision Avoidance (LCA).

The LCA algorithm displaces agents toward their
goal in the direction established by the MDP Op-
timal Policy (Π∗). This technique presents three
simulation advantages:

Evacuation scenarios. Several exits and obsta-
cles can be modeled, matching real scenarios for
evacuation. Scenario zonal hierarchy. Zones of
different importance can be modeled, simulating
rough terrain or agent preference to navigate. In-
teraction. Since the MDP solution is segmented,
obstacles or exits can be introduced or removed
without the need to stop the simulation.

3.3 Hierarchical Structures for Level of Detail
for Varied Animated Crowds

We introduce a level of detail system useful for
varied animated crowds, which is capable of han-
dling several thousands of varied animated crowds
at interactive frame rates. This is accomplished
by using two complementary structures to reduce
memory consumption and optimize the rendering
stage. The first structure is a skeleton with asso-
ciated octrees which are used for computing ge-
ometry and animation level of detail. The second
structure is a tiling mechanism and a quad-tree
built on top of this tiling that is used for further
level of detail optimization, allowing us to combine
geometry from different characters in parts of the
scene that are far away from the camera. The
combination of these structures allows us to render
several thousands of varied characters within a
crowd, for instance, crowds up to a quarter million
characters are achievable at interactive frame rates
using these structures. Extra details on the tech-
nique can be found in Toledo et al. [17].

4 Cluster Crowd Simulation

4.1 Algorithm Overview

In this section we present a simplified algorithm to
simulate reactive behavior, i.e., crowds of agents

Fig. 2. Navigation and LCA. Top: MDP partition with
one exit. A coarse partition provides Navigation for
agents. Navigation is modeled with a MDP. Middle: MDP
partition with two exits. Several rewards and penalties
can be modeled. Bottom: LCA partition. Another parallel
algorithm handles LCA using the MDP policy

wandering in a virtual environment while avoiding
collisions between each other. This is a concep-
tually simple behavior; however, in non-optimal
conditions, its complexity is O(N2) (where N is
the number of agents in the crowd), i.e., an agent
position must be compared with all the remaining
positions to detect collisions. Current techniques
reduce the complexity of the algorithm using ge-
ometrical or hierarchical approaches [5, 13]. We
reduce the complexity of the algorithm by partition-
ing the navigable space into a grid which cuts down
the search space. In addition, by defining a search
radius for each agent, this search space is reduced
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even more. This approach follows [11], however,
we increase the performance of the algorithm by
adopting a parallel programming model based on
GPU and multiple nodes (Sec. 4.2).

The algorithm was implemented in CUDA and
uses three data arrays that store id, agent, and
world information. The id array stores a unique
identifier for each agent. The agent array stores
the x,y position in the world, the motion’s direction
(stored as an angle), and the speed at which the
agent is moving. The world array stores zeros
for unoccupied cells and the agent id for occupied
cells.

The agents are initially placed in the world with
random direction and speed at random locations.
Then the simulation works as follows. Each agent
is moved in the direction and with the speed that is
contained in its representation, and does so unless
this would take the agent to a cell that is occupied.
Collision avoidance is calculated by evaluating a
radius of five positions around their current posi-
tion; then the agent will move in the direction in
which there are fewer agents or unoccupied cells
within such radius. Such evaluation starts using
the original agent’s direction and switches counter-
clockwise every 45 degrees covering a total of eight
directions (Figure 3 left).

Fig. 3. Left: Evaluation radius and directions for collision
avoidance. Right: Path evaluation example

Notice that if there is another agent in the evalu-
ated path having the same direction as the current
agent, such cell is considered as a free cell, since it
would be no collision. For example, Figure 3 Right
shows the case of the agent in the position (8,6).
The first direction evaluated is upwards because
it is its original direction; after four cells there is
another agent but it is going in the same direction,
therefore, the cell is considered free. There are

other directions where we would also find empty
cells in a radius of five positions, for example, in the
down direction, but we give priority to the agent’s
original direction. In the current implementation,
agents choose the best cell at every iteration, but
the original angle for the agent is not changed, so
in the next iteration agents will try to move in the
original direction. When an agent reaches the limit
of the world, it rotates 180 degrees; for example,
the agent at position (15,9) would return in the
same path.

The main computation is updating the status of
the world and the agents, and this task is per-
formed in the GPU using CUDA. Notice that the
data arrays are uploaded to the GPU memory at
the beginning of the simulation. On the other hand,
by defining a search radius and direction for each
agent, our algorithm reduces the original complex-
ity of collision avoidance from O(N2) to O(N×r×d)
worst case, where N is the number of agents, r <<
N is the search radius and d << N is the search
direction. The best case occurs when the agent
finds another agent just in front of him, i.e., r = 1
and d = 1 which turns into O(N) complexity, and
the worst case occurs when the agent is rounded
up by other agents.

4.1.1 Results

Three experiments were designed to verify the
performance of the algorithm in different platforms
consisting in an embedded system and four differ-
ent GPUs. The embedded system was a Jetson
TK1 development kit with 192 CUDA cores and 1.8
GB VRAM, and the GPUs were a GT 540M with 96
CUDA cores and 2 GB VRAM, a Tesla M2090 with
512 CUDA cores and 6 GB in RAM, a GTX TITAN
Black with 2880 CUDA cores and 6 GB VRAM, and
a Tesla K40c with 2880 CUDA cores and 12 GB
VRAM.

All tests were performed running 30 iterations
and using a world size of 16384× 16384. Reported
time corresponds to the average time per simula-
tion step given in seconds.

The first experiment consisted in determining the
speedup of the simulation when GPU processing
is present. The sequential version of the algorithm,
running in one CPU core of an Intel Xeon E5649
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Fig. 4. Speedup obtained in the CUDA version of the
algorithm

Six-Core at 2.53 GHz with 24 GB RAM, is used
as a reference. Results of this test are reported in
Figure 4.

The second test consisted in evaluating the al-
gorithm’s performance on the different hardware
platforms described earlier. Figure 5 shows the
results from this test. Considering 30ms being the
threshold response time for interactive systems,
according to the results the Jetson TK1 is not able
to respond with the minimal quantity of agents
which was 5122 in this test, GT 540M can simulate
around 500 thousand agents, Tesla, Titan Black,
and K40c can simulate almost a million of agents.

Notice that in these experiments, we simulate up
to 16 million agents because most of the GPUs
were able to allocate such amount of data except
the Jetson TK1 which supported up to eight million
agents.

The third experiment allowed us to establish the
performance of each platform when reaching its

Fig. 5. Performance comparison in different GPUs

peak load (Figure 6).

Fig. 6. Peak load of the embedded system and GPUs
used in the experiments

4.2 Simulating Crowds in Minotauro Cluster
using MPI and CUDA

As found in the experiments in Section 4.1.1, the
number of agents to compute in one node is limited
by the memory available in the GPU. In particular,
this limit is 6 GB for the Minotauro cluster (Nvidia
M2090 Tesla GPU); thus, to tackle larger problems
we will need to use multiple nodes.

Multiple node programming requires memory
management, communication, and synchroniza-
tion techniques to avoid communication over-
heads; the system architecture becomes complex
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because of the processes inherent to the program-
ming model.

In order to extend the algorithm from Section
4.1 to multiple nodes, we implemented the tiling
technique, i.e., the world is tiled, then each tile is
computed by a different node. In this case, CUDA
is used for computing the agent’s new position, and
MPI (Message Passing Interface) is used for data
interchange between nodes.

We designed the system to use a number of
nodes that has a square root. The use of the
number of nodes that has a square root allows us
to divide the world into an equal number of rows
and columns (Figure 7). The minimum number of
nodes that our program can use to execute the sim-
ulation is four. On the other hand, the world can be
any size, but large sizes are to be expected given
a large number of agents which can be simulated.

Fig. 7. Example of a simulation requiring 9 nodes: the
world is tiled into 9 zones, i.e., 3 rows and 3 columns

Regarding the data structures, we modify the
id array to store the zone in which each agent is
located. Notice that, to save memory, each node
stores just the tile of the world that corresponds to
it, using an offset in axis x and y to calculate the
global coordinate.

On the other hand, the collision avoidance al-
gorithm is modified when the agents are on the
borders of the tile. We explain this with an example.
Considering a vision radius of one cell, Figure 8
shows that the agent located at coordinates (10, 9)
in zone 5 needs to know if the cell at coordinates
(11, 9) is empty: it is necessary to exchange the
information of the agents near the borders in order
to determine the next position of such agents.

Fig. 8. Interchange of agent information in area border-
ing two nodes

Therefore, the area considered as the tile’s bor-
der is the radius times the height of the area for left
and right neighbors, and the radius times the width
of the area in the case of up and down neighbors.

Communications are made more efficient by ex-
changing only the cells that are occupied at the
borders using a two-dimensional integer array that
stores the coordinate of a cell in the world and the
identifier of the agent occupying the cell. On the
other hand, as computation is performed by several
nodes, we are reducing the complexity of the algo-
rithm presented in Section 4.1 to O(N×r×d

n ), where
N , r, and d remain as described in Section 4.1,
and n is the number of compute nodes. However,
this complexity only takes into account an ideal
case when nodes do not interchange data. Con-
sidering we are using point-to-point communication
between n nodes and sending messages of m
size, then, the complexity is O(N×r×d

n ) + O(nm)

or O(N×r×d
n + nm), with n << N and m << N .

A worst case for the communication complexity
may occur when a node communicates with its
four neighbors, e.g., node five in Figure 7, and an
example of a best case is node three, which only in-
terchanges data with nodes six and two (Figure 7).

4.2.1 Results

Two experiments were performed in order to verify
the efficiency of the algorithm using multiple nodes.
In both experiments, the world size was 278522 and
we ran three iterations of the algorithm.

The first experiment consisted in a performance
comparison between the CPU and GPU (CUDA)
version of the algorithm using 4, 9, and 16 nodes
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(Figure 9). Although the GPU version is better
than the CPU version as expected, the difference
is not as big as in single node. The GPU version
execution time is increased dramatically due to the
numerous internode communications, and, in par-
ticular, because in order to transfer data between
GPUs we must copy data from the GPU memory
to the CPU memory, then transfer data between
nodes, and then copy from the CPU memory to
the GPU memory. The execution time of the CPU
version has improved compared to the single node
sequential version.

Fig. 9. Performance comparison between CPU and GPU
versions using 4, 9, and 16 nodes

The second test was to determine simulation
scaling using multiple nodes (Figure 10). In the
current implementation it is possible to simulate up
to 289 million agents with 4 nodes and 529 million
agents with 9 nodes.

The response time for the CUDA multiple node
version increases up to 5 seconds for 64 million
agents, which is a good number considering the
number of agents. On the other hand, the CPU
multiple node version improves considerably with
respect to the single node version, but the GPU
multiple node version is still at least 3 times faster.

Fig. 10. Scaling

5 GPU Cluster Crowd Visualization

Recent advances in hardware and software tech-
nologies in HPC technology have allowed the sim-
ulation of large scale problems. Computational
solutions produce a vast amount of data which
require further processing to offer insights about
the results. Such information usually is simplified
before analysis; however, simplifications may hide
relevant details.

On the other hand, visualization, which trans-
forms these results into graphical and color repre-
sentations, can improve human cognition in data or
results’ analysis. In addition, in situ visualization re-
duces I/O operations [8, 22], i.e., it avoids full data
transfer of results; it also reduces time, allowing the
researcher to inspect partial simulation results and
perform simulation adaptations as required.

The selection of a visualization mechanism de-
pends on the simulation and available HPC infras-
tructure; our approach for visualization can render
detailed 3D crowds. The term ‘detailed’ refers
to the fact that the crowd is rendered using an-
imated characters with different geometrical and
visual appearance. In addition, we have developed
three visualization modes described in the follow-
ing paragraphs that are suitable for the particular
BSC’s infrastructure.

Figure 11 shows the crowd engine’s modules de-
signed to visualize detailed 3D crowds. The GoD,
or generation of diversity stage, runs as a pre-
process. This stage generates and animates 3D
characters semi-automatically. In run-time simula-
tion results are stored in an array of ids and agent
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Fig. 11. General diagram of our Crowd Engine. GoD
(generation of diversity) generates and animates geo-
metrical and visually diverse characters, then they are
rendered using level of detail (LoD) and view frustum
culling (VFC) according to the simulation results

positions (Section 4) which are used to render
unique animated characters. Details of this stage
are reported in [16]. Discrete level of detail (LoD)
and view frustum culling (VFC) are implemented
in GPU to visualize several hundreds of characters
in real time [4]. As a result, our engine generates
frames that are processed or transmitted according
to different engine configurations.

5.1 Streaming Mode

As mentioned earlier, visualization mechanisms
depend on the simulation and available HPC infras-
tructure. In the case of the Barcelona Supercom-
puting Center, the Minotauro cluster establishes
fast network connection within BSC’s LAN, this
allows visualization at interactive rates. Default
set-up uses VirtualGL1 for image transport. Band-
width between the user and the cluster can help
or severely impair an interactive user experience.
Unfortunately, external bandwidth into BSC is re-
stricted resulting in a visualization frame rate of
about 1-2 fps with a resolution of 5122 pixels using
VirtualGL’s jpeg compression.

Accessing simulation results for visualization in
any computer is one of our goals. It is desirable
to enable researchers to access their results for
visualization and analysis at a distance, and such
access may occur during or after simulation. A

1http://www.virtualgl.org/

Fig. 12. Our crowd engine can be configured in the
streaming mode to visualize simulations or results being
calculated or stored in remote resources

second goal is to couple our crowd engine to ex-
isting BSC Pandora framework [20] without major
modifications in any of the platforms.

In order to achieve both goals, we decided to
execute the simulation (Section 4) or access the
simulation data from a remote source and stream
out the results to a visualization server or a work-
station. Figure 12 shows a general diagram of this
approach. A remote resource sends crowd simu-
lation results (previously generated or calculated in
run-time) to a visualization server which does the
crowd rendering.

For the second case, which requires remote
resource access, a HDF5 file format parser was
designed to retrieve the data. For test purposes
OSC protocol is used to stream results in both
cases.

Notice that the bandwidth of the connection
needs to be less than that needed for transferring
images. It depends on the number of agents and
not the size or quality of the image. It works for
fewer agents but works for slower networks and
gives us good quality results.

5.2 In Situ Mode

In Situ Visualization configuration uses the algo-
rithm described in Section 4.2 for simulation using
the Minotauro GPU cluster. Each node executes
both the simulation and the visualization of one
tile of the world (Figure 13). The crowd engine
was modified to support MPI communications and
off-screen rendering.
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Fig. 13. In situ configuration allows crowd simulation and
visualization within different nodes. Each participating
node sends its rendered frames to the master node. The
master node composes each received frame to generate
the final image

MPI communications enable the engine to as-
sign simulation/rendering work to each participat-
ing node, share simulation results between nodes
(Section 4) and transmit partial renderings for final
composition. Off-screen rendering enables each
node to capture a visualization frame with color
and depth information encoded in an RGBA array
where the depth component is stored in the alpha
channel. Then this information is downloaded to
RAM and transferred to the master node.

Once the master node receives the color plus
depth images from each node, it generates the final
composite. This image is generated based on sort-
last depth compositing algorithm [9] implemented
in GLSL. Finally, the composite image can be sent
to the client through VirtualGL.

Notice that the client will not require advanced
rendering resources as needed in the streaming
mode but it needs to be connected to BSC’s LAN.

5.3 Web Mode

A particular requirement of our streaming architec-
ture (Section 5.1) is the use of a workstation or
visualization server having a last generation GPU.
On the other hand, in situ visualization requires
direct connection between the user and the cluster.

We are designing a third option in order to fill the
gap between streaming and in situ mode. The web
mode, currently in the prototype stage, is designed

Fig. 14. Web mode allows to display visualization results
in web browsers

to allow the researcher to access visualization re-
sults in any device and away from the desktop.

Inspired by cloud gaming technology, this con-
figuration captures the results from visualization
and streams them out to a web browser (Figure
14). It follows the client/server architecture: the
server executes the simulation, visualization, and
streaming, and the client displays the visualization
frames and captures user interaction events which
are sent back to the server.

5.4 Results

Stream mode tests were performed using two op-
tions. In the first option, a remote resource streams
a previously generated simulation in the Pandora
Framework of a wandering crowd behavior. The
remote resource uses a peer to peer connection to
a workstation with an Nvidia TITAN graphics card.
In this case we obtained a consistent frame rate of
60 fps for a crowd of 4096 characters.

The second test consisted in setting up a reverse
tunneling connection between the Minotauro clus-
ter and the workstation. The simulation is executed
in the cluster and results are streamed out to the
workstation. In this case we were also able to
render 4096 characters at 60 fps.

It is important to mention that our streaming
algorithm does not implement any buffering tech-
nique. However, our crowd engine interpolates the
received character’s positions between frames to
avoid artifacts due to possible data loss.

In the case of in situ visualization, the test was
performed in the Minotauro cluster using five MPI
process. Four processes simulated and rendered
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a) Far distance view.

b) Close up view.

Fig. 15. In situ mode results. Four nodes are used, each
renders the crowd according to the assigned world tile

4096 characters and the fifth one performed image
composition (Figure 15 Up). Figure 15 Bottom
shows a close up view of the simulation. In the
case of in situ visualization, we obtained frame
rates between 15 to 20 fps for a simulation of 16K
characters.

Further tests consisting in running the crowd
engine in one node (Nvidia Tesla M2090) showed
that it can render up to 8K characters at 10-12 fps
while the workstation with an Nvidia TITAN graphic
card can render up to 32K characters at 16-20 fps.

Finally, to test the web prototype, we designed
two experiments. The first one consisted in running
the prototype in the same machine using differ-
ent web browsers to detect potential compatibility
problems (Figure 16). Our results showed that
Chrome, Firefox, and Opera browsers were able to
display the visualization successfully. In addition,

Fig. 16. Results of the web mode prototype. Left:
OpenGL/glut window. Right: Visualization is displayed
in Chrome browser

there were found no noticeable lag between the
user interaction and the simulation.

In the second experiment, we made a peer to
peer connection between the workstation and a
laptop, and between the workstation and an An-
droid based mobile device. Some lag between the
simulation and the visualization in the browser was
noticeable. This is due to the fact that in the current
state of the prototype we have not yet implemented
any compression mechanism; however, this config-
uration allows us to inspect visualization results in
any device.

6 Conclusions

In the embedded and single GPUs systems, our
algorithm scales almost linearly according to its
algorithmic complexity. It reaches up to 302 million
agents in a single GPU system. A result that
attracted our attention was the performance of the
Jetson TK1. Despite having 192 CUDA cores, the
Jetson TK1 had a poorer performance than the GT
540M which has 96 CUDA cores. This is because
the Jetson TK1 has a clock rate of 852 MHz and
a memory bus width of 64 bits, while the GT 540
has a clock rate of 1344 MHz and a memory bus
width of 128 bits. Nevertheless, the Jetson TK1
performance is up to three times better than that
of the sequential version. It is also important to
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notice that the architecture of the GPUs allows
better speedups when processing larger numbers
of agents.

The performance behavior of the other GPUs
were as expected.

On the other hand, the cluster version of the
algorithm scales up to 529 million agents with 9
nodes. It is important to mention that communi-
cation overhead is reduced by computation and
communication overlapping and exchanging only
occupied positions in the borders between neigh-
bors. We also found that scalability is worse for
the GPU accelerated application than that for the
CPU application given that the impact of the GPU
acceleration was quickly dominated by the commu-
nication time, since in each iteration we exchange
agents and border areas with neighbor nodes. We
are working to improve the communication pro-
cesses.

Regarding visualization, we have designed a
configurable crowd engine that supports three ba-
sic modes: streaming, in situ, and web. The
streaming mechanism supports crowd visualiza-
tion in machines connected outside the BSC’s
LAN; in addition, the web mode allows us to display
large scale simulations in any device. Both config-
urations offer flexibility and may reduce infrastruc-
ture costs when advanced visualization systems
such as the CAVE or Tiled Display Walls are re-
motely available.

Streaming mode also avoids the difficulty of cou-
pling already existing simulation tools, and the web
mode can be used to take advantage of sensors
available in mobile devices. On the other hand, our
in situ visualization approach for crowd rendering is
designed to take advantage of the GPUs available
in the Minotauro supercomputer. But additional
performance is expected when the simulation runs
in one GPU and crowd rendering in the second
GPU is available per each node.

7 Future Work

As future work, we plan to use recent techniques
of communication like CUDA-aware MPI or GPU
Direct, expecting these technologies to improve
the communication process. On the other hand,
the dynamic nature of crowd simulation makes it

prone to load imbalance quickly, so we are adopt-
ing OMPSS, a programming model developed at
the Barcelona Supercomputing Center, to tackle
this problem.

The visualization architecture also needs some
improvements. For example, the streaming mode
can be used to couple the rendering engine with
additional crowd simulation frameworks; the web
mode requires mechanisms for adaptive compres-
sion and buffering. In addition, an interesting op-
portunity that the web configuration offers is the
use of sensors available in mobile devices (e.g.,
touch screen, accelerometers, and gyroscopes) for
user interaction. A mobile device can also be used
as a remote control in cases where visualization is
displayed in CAVE systems or Tiled Display Walls.

Finally, detailed rendering demands more re-
sources than simulation. In the current in situ
architecture, the amount of simulated agents de-
pends on how many of them can be rendered; in
other words, we do not simulate more agents than
those that can be visualized per node. Alternative
architectures for in situ visualization will use some
nodes for simulation and others for visualization.
Another important modification that we are consid-
ering is the reduction of communications between
slave−master nodes: instead of performing the fi-
nal composition in the master, partial compositions
can be done in nodes selected based on the virtual
camera. Then each partial composite can be trans-
mitted to the nodes near to the camera to perform
additional compositions and, finally, the master will
do the global composition of the remaining partial
composites. This modification will be necessary
for exascale systems which would be composed of
thousands of compute nodes.
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