SciELO - Scientific Electronic Library Online

 
vol.12 issue4Modeling and Tip Position Control of a Flexible Link Robot: Experimental ResultsVisibility of limited range in staircase polygons author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.12 n.4 México Apr./Jun. 2009

 

Artículos

 

Controlling the Strongly Damping Inertia Wheel Pendulum via Nested Saturation Functions

 

Control del Péndulo con Rueda de Inercia Fuertemente Amortiguado mediante Funciones de Saturación Anidadas

 

Carlos Aguilar Ibáñez1, Óscar Octavio Gutiérrez Frías2, Miguel Santiago Suárez Castañón3

 

1 Centro de Investigación en Computación del Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n Esq. Manuel Othón de M., Unidad Profesional Adolfo López Mateos Col. San Pedro Zacatenco, A.P. 75476, México, D.F. 07700, México Phone: (52–55) 729–6000 ext. 56568, FAX: (52–55) 586–2936, email: caguilar@cic.ipn.mx.

2 Centro de Investigación en Computación del Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n Esq. Manuel Othón de M., Unidad Profesional Adolfo López Mateos Col. San Pedro Zacatenco, A.P. 75476, México, D.F. 07700, México Phone: (52–55) 729–6000 ext. 56568, FAX: (52–55) 586–2936.

3 Escuela Superior de Cómputo del Instituto Politécnico Nacional Av. Juan de Dios Bátiz s/n Esq. Manuel Othón de M., Unidad Profesional Adolfo López Mateos Col. San Pedro Zacatenco, A.P. 75476, México, D.F. 07700, México Phone: (52–55) 729–6000 ext. 52028, email: sasuarez@prodigy.net.mx.

 

Article received on January 16, 2008
Accepted on June 03, 2008

 

Abstract

In this paper we solve the stabilization problem of the strongly damping inertia wheel pendulum around its unstable equilibrium. The stabilization is accomplished by using nested saturation functions. The use of nested saturation function is possible because this system can be rewritten approximately as a chain of integrators with and nonlinear perturbation. The proposed control strategy makes the closed–loop system globally asymptotically and locally exponentially stable around the unstable inverted vertical position, even when the physical damping is presented in the model.

Keywords: Nested saturation functions, Lyapunov function, nonlinear systems.

 

Resumen

En este artículo resolvemos el problema de estabilización del péndulo con rueda de inercia fuertemente amortiguado alrededor de su punto de equilibrio inestable. La estabilización el lograda mediante el uso de funciones de saturación anidadas. El uso de funciones de saturación anidadas es posible porque se puede escribir una aproximación del sistema como una cadena de integradores con una perturbación no lineal. La estrategia de control que se propone hace que el sistema en lazo cerrado sea asintóticamente estable de forma global y exponencialmente estable de forma local alrededor de la posición vertical inestable, aún cuando el amortiguamiento físico está presente en el modelo.

Palabras Clave: Funciones de saturación anidadas, Función de Lyapunov, Sistemas no lineales.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This research was supported by the Secretaría de Investigación y Posgrado (SIP–IPN) under research grants 20071088, 20082694 and 20082887. Octavio Gutiérrez–Frias is a doctoral student at the CIC–IPN and a scholarship holder of the CONACYT.

 

References

1. Spong, M.W., Corke, P., and Lozano, R.: Nonlinear Control of the Inertia Wheel Pendulum. Automatica. 37, 1845–1851 (2001).        [ Links ]

2. Olfati–Saber, R.: Global Stabilization of a Flat Underactuated System: the Inertia Wheel Pendulum. In: Proceedings of the 40th Conference on Decision and Control. 4, pp. 3764 – 3765, Orlando, FL (Dec. 2001).        [ Links ]

3. Fantoni, I., Lozano, R.: Nonlinear Control for Underactuated Mechanical Systems. Springer–Verlag, London (2002).        [ Links ]

4. Ortega, R., Spong, M.W., Gomez–Estern, F.: Stabilization of Underactuated Mechanical Systems via Interconnection and Damping Assignment. IEEE Trans. Aut. Control. 47(8), 1281–1233 (2002).        [ Links ]

5. Hernández, V. M., A combined sliding mode–generalized PI control scheme for swinging up and balancing the inertial wheel pendulum. Asian Journal of Control, 5(4), 620–625 (2003).        [ Links ]

6. Gómez–Estern, F., Van der Schaft, A.J.: Physical damping in IDA–PBC controlled underactuated mechanical systems. European Journal on Control. Special Issue on Hamiltonian and Lagrangian Methods for Nonlinear Control. (Guest Editors: A. Astolfi and A.J. van der Schaft). 10, 451––468 (2004).        [ Links ]

7. Woolsey, C., Reddy C. K., Bloch A. M., Chang D. E., Leonard N. E., Marsden J. E.: Controlled Lagrangian systems with gyroscopic forcing and dissipation. European Journal of Control. 10(5), 478–496 (2004).        [ Links ]

8. Woolsey, C., Bloch, A. M., Leonard, N. E. and Marsden, J. E., Physical dissipation and the method of controlled Lagrangians, Proceedings of the European Control Conference, Porto, Portugal, September 2001, 2570–2575.        [ Links ]

9. Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E. and Ratiu, T. S., Dissipation Induced Instabilities, Ann. Inst. H. Poincaré, Analyse Nonlinéaire, 11, 37–90 (1994).        [ Links ]

10. Sira–Ramírez, H., Agrawal, S.K., Differencial Flat Systems, Marcel Decker, USA, 2004.        [ Links ]

11. Reddy, C. K., Whitacre, W., Woosley, C. A.: Controlled Lagrangian with gyroscopic forcing: An experimental application. In: Proceedings of the American Control Conference, Boston, MA, USA (June 2004).        [ Links ]

12. Teel, A. R.: A nonlinear small gain theorem for the analysis of control system with saturation pendulum. IEEE Trans. on Automatic Control. 41, 1256–1270 (1996).        [ Links ]

13. Teel, A. R.: Global stabilization and restricted tracking for multiple integrators with bounded controls. Control Lett. 18, 165–171 (1992).        [ Links ]

14. Teel, A. R.: Semi–global stabilization of the ball and beam using output feedback, in Proceedings of the American Control Conference, pp 2577–2581, (June 1993).        [ Links ]

15. Lozano, R., Dimogianopoulos, D.: Stabilization of a chain of integrators with nonlinear perturbations: Application to the inverted pendulum, in: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 5191–5196, Maui Hawaii (Dec. 2003)        [ Links ]

16. Castillo, P., Lozano, R., Dzul, A.: Modelling and Control of Mini Flying Machines. Springer–Verlag, Berlin (2005).        [ Links ]

17. Aguilar–Ibañez, C., Gutiérrez Frias, O. : Controlling the inverted pendulum by means of a nested saturation function. Nonlinear Dynamics, ( in press). DOI 10.1007/s11071–007–9224–3.        [ Links ]

18. Fantoni, I. Lozano, R.: Global stabilization of the cart–pendulum system using saturation functions, in Proceedings. of the 42nd IEEE Conference on Decision and Control, Vol. 5, pp. 4393– 4398, (December, 2003).        [ Links ]

19. Barbu, C.; Sepulchre, R.; Wei Lin; Kokotovic, P.V., Global asymptotic stabilization of the ball–and–beam system, 1997., Proceedings of the 36th IEEE Conference on Decision and Control Vol. 3, pp. 2351–2355, (December, 1997).        [ Links ]

20. Khalil, H. K.: Non–linear Systems 2nd. Edition. Prentice Hall, N.J. (1996).        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License