SciELO - Scientific Electronic Library Online

vol.12 número1Performance Evaluation of an Integrated Optoelectronic ReceiverMeasuring the Institutional Efficiency Using DEA and AHP: the Case of a Mexican University índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Não possue artigos similaresSimilares em SciELO


Journal of applied research and technology

versão On-line ISSN 2448-6736versão impressa ISSN 1665-6423

J. appl. res. technol vol.12 no.1 Ciudad de México Fev. 2014


Experimental Synchronization by Means of Observers


R. Martínez-Guerra*1, C. A. Pérez-Pinacho1, G. C. Gómez-Cortés1, J. C. Cruz-Victoria2, J. L. Mata-Machuca1


1 Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 México, D.F. 07360, México. *

2 Universidad Politécnica de Tlaxcala Av. Universidad Politécnica de Tlaxcala No.1 San Pedro Xalcaltzinco, Tepeyanco, C.P. 90180, Tlaxcala, México.



In this paper we deal with the experimental synchronization of the Colpitts oscillator in a real-time implementation. Our approach is based on observer design theory in a master-slave configuration thus, a chaos synchronization problem can be posed as an observer design procedure, where the coupling signal is viewed as a measurable output and a slave system is regarded as an observer. A polynomial observer is used for synchronizing the Colpitts oscillator employing linear matrix inequalities. Finally, a comparison with a reduced order observer and a high gain observer is given to assess the performance of the proposed observer.

Keywords: Experimental synchronization, polynomial observer, reduced order observer, high gain observer, algebraic observability condition.



En este artículo se aborda la sincronización experimental del oscilador de Colpitts en tiempo real. Nuestra aproximación se realiza mediante la teoría de diseño de observadores en una configuración maestro-esclavo, por lo que el problema de sincronización caótica puede plantearse como el diseño de un observador. Se utiliza un observador polinomial para la sincronización del oscilador de Colpitts empleando desigualdades matriciales lineales. Se realiza una comparación con el observador de orden reducido y con el observador de alta ganancia con la finalidad de verificar el desempeño del observador propuesto.





[1] L.M. Pecora, and T.L. Carrol, "Synchronization in chaotic systems", Phys. Rev. A, vol. 64, pp. 821-824, 1990.         [ Links ]

[2] M. Chen, D. Zhou, and Y. Shang, "A sliding mode observer based secure communication scheme," Chaos, Solitions and Fractals, vol. 25, pp. 573-578, 2005.         [ Links ]

[3] M. Feki, Sliding mode control and synchronization of chaotic systems with parametrics uncertainties, Chaos, Solitons Fractals A 41(2009) 1390-1400.         [ Links ]

[4] F. Zhu, "Observer-based synchronization of uncertain chaotic systems and its application to secure communications," Chaos, Solitons Fractals, vol. 40, no. 5, pp. 2384-2391, Jun. 2009.         [ Links ]

[5] H. Serrano-Guerrero, C. Cruz-Hernández, R.M. López-Gutiérrez, L. Cardoza-Avendaño, R.A. Chávez-Pérez, Chaotic Synchronization in Nearest-Neighbor Coupled Networks of 3D CNNs, Journal of Applied Research and Technology, vol. 11, no.1, pp. 26-41, 2013.         [ Links ]

[6] R. Núñez Pérez, Measurement of Chua chaos and its applications, Journal of Applied Research and Technology vol 6, no. 1, pp. 45-53, 2009.         [ Links ]

[7] R.J. Wai, Y.W. Lin, H.C. Yang, Experimental verification of total sliding-mode control Chua's chaotic circuit, IET Circuits, Devices & Systems vol. 5, 451-461, 2011.         [ Links ]

[8] C. Hua and X. Guan, "Synchronization of chaotic systems based on PI observer design," Phys. Lett. A, Vol. 334, pp. 382-389, 2005.         [ Links ]

[9] M. Chen, D. Zhou, and Y. Shang, "A sliding mode observer based secure communication scheme," Chaos, Solitons Fractals, vol. 25, pp. 573-578, 2005.         [ Links ]

[10] E. Cherrier, M. Boutayeb, and J. Ragot, "Observers-based synchronization and input recovery for a class of nonlinear chaotic models", IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no.9, pp. 1977-1988, Sep. 2006.         [ Links ]

[11] A.L. Fradkov, Cybernetical physics: from control of chaos to quantum control, Springer, Berlin; 2007.         [ Links ]

[12] N. Noroozi and M. Roopaei, P. Karimaghaee, "Adaptive control and synchronization in a class of partially unknown chaotic systems", Chaos, vol. 19, 023-121, 2009.         [ Links ]

[13] F. Wang and C. Liu, "A new criterion for chaos and hyperchaos synchronization using linear feedback control", Phys. Lett. A, vol. 360, pp. 274-278, 2006.         [ Links ]

[14] A. Harb and W. Ahmad, "Chaotic systems synchronization in secure communication systems," in Proc. World Congress Computer Science Computer Engineering, and Applied Computing, Las Vegas, 2006.         [ Links ]

[15] C. Wang and S. Ge, "Adaptive backstepping control of uncertain Lorenz system," Int. J. Bifurc. Chaos, vol. 11, pp. 1115-1119, 2001.         [ Links ]

[16] D. Ghosh, A. Chowdhury and P. Saha, "On the various kinds of synchronization in delayed Duffing-Van der pol system," Commun. Nonlinear Sci. Numer. Simulat, vol. 13, pp. 790-803, 2008.         [ Links ]

[17] D. Ghosh, S. Banerjee and A. Chowdhury, "Synchronization between variable time-delayed systems and cryptography", Euro. Phys. Lett., vol. 80, 30006: p1-p6, 2007.         [ Links ]

[18] S. Garfinkel and G. Spafford, Practical unix and internet security, O' Reilly & Associates Inc., Sebastopol, CA; 1996.         [ Links ]

[19] D. Li, J. Lu and X. Wu, "Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems", Chaos, Solitons Fractals, vol. 23, pp. 79-85, 2005.         [ Links ]

[20] E. Elabasy, H. Agiza and M. El-Dessoky, "Global chaos synchronization for four scroll attractor by nonlinear control," Sci. Res. Essay, vol. 1, pp. 65-71, 2006.         [ Links ]

[21] A. Emadzadeh and M. Haeri, "Global Synchronization of two different chaotic systems via nonlinear control," in Proc. ICCAS, Gyeonggi-Do, Korea, 2005.         [ Links ]

[22] L. Min and J. Jing, "A new theorem to synchronization of unified chaotic systems via adaptive control," Chaos, Solitons Fractals, vol. 24, pp.1363-1371, 2004.         [ Links ]

[23] A.L. Fradkov, B. Andrievsky, and R.J. Evans, "Adaptive observer-based synchronization of chaotic system with first-order coder in the presence of information constraints," IEEE Trans. Circuit Syst. I, Reg. Papers, vol. 55, no. 6, pp. 1685-1694, Jul. 2008.         [ Links ]

[24] H.B. Fotsin and J. Daafouz, "Adaptive Synchronization of uncertain chaotic Colpitts oscillator based on parameter identification," Phys. Lett. A, vol. 339, pp. 304-315, 2005.         [ Links ]

[25] R.E. Kalman, "A new approach to linear filtering and prediction problems," Trans. ASME - J. Basic Eng., Series D, vol. 82, pp. 35-45, 1960.         [ Links ]

[26] D. Luenberger, "An introduction to observers," IEEE Trans. Autom. Contr., vol. 16, pp. 596-602, 1971.         [ Links ]

[27] J. Gauthier, H. Hammouri, and S. Othman, "A simple observer for nonlinear systems. Applications to bioreactors," IEEE Trans. Autom. Contr., vol. 37, pp. 875-880, 1992.         [ Links ]

[28] H. Keller, "Non-linear observer design by transformation into a generalized observer canonical form," Int. J. Control, vol 46, pp. 1915-1930, 1987.         [ Links ]

[29] A. Levant, "Universal SISO sliding mode controllers with finite time convergence," IEEE Trans. Autom. Contr., vol. 46, pp. 1447-1451, 2001.         [ Links ]

[30] J. Young and J. Farrel, "0bserver based backstepping control using online approximation," in Proc. IEEE Amer. Contr. Conf., Chicago, IL, 2000, pp. 3646-3650.         [ Links ]

[31] H. Nijmeijer, and I.M.Y. Mareels, "An observer looks at synchronization," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 44, pp. 882-890, 1997.         [ Links ]

[32] M. Feki, "Observer-based exact synchronization of ideal and mismatched chaotic systems," Phys. Lett. A, vol. 309, pp. 53-60, 2003.         [ Links ]

[33] O. Morguil and M. Feki, "A chaotic masking scheme by using synchronized chaotic systems", Phys. Lett. A, vol. 251, pp. 169-176, 199.         [ Links ]

[34] M P. Kennedy, "Chaos in Colpitts Oscillator", IEEE Trans. Circuits Syst. I, vol. 41, pp. 771-774. 1994.         [ Links ]

[35] L. Guo-Hui, "Synchronization and anti-synchronization of Colpitts oscillators using active control," Chaos, Solitons Fractals, vol. 26, pp. 87-93, 2005.         [ Links ]

[36] G.M. Maggio, O. De Feo, and M P. Kennedy, "Nonlinear analysis of the Colpitts oscillator and applications to design," IEEE Trans. Circuits Syst. I, vol. 46, pp. 1118-1130, 1999.         [ Links ]

[37] N.M. Nguyen, "Monolithic Microwave Oscillators and Amplifiers," Ph. D. Thesis, EECS Department, University of California, Berkeley, 1991.         [ Links ]

[38] A. Poznyak (2008) Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques, vol. 1. Elservier, pp. 77-212.         [ Links ]

[39] S. Raghavan and J. Hedrick, "Observer design for a class of nonlinear systems," Int J. Control, vol. 59, pp. 515-528, 1994.         [ Links ]

[40] Rafael Martinez-Guerra and J. L. Mata-Machuca (2014), Fault detection and diagnosis in nonlinear systems: A differential and algebraic viewpoint, understanding complex systems, Springer.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons