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ABSTRACT

In this paper we deal with the experimental synchronization of the Colpitts oscillator in a real-time implementation. Our
approach is based on observer design theory in a master-slave configuration thus, a chaos synchronization problem
can be posed as an observer design procedure, where the coupling signal is viewed as a measurable output and a
slave system is regarded as an observer. A polynomial observer is used for synchronizing the Colpitts oscillator
employing linear matrix inequalities. Finally, a comparison with a reduced order observer and a high gain observer is
given to assess the performance of the proposed observer.

Keywords: experimental synchronization, polynomial observer, reduced order observer, high gain observer, algebraic
observability condition.

RESUMEN

En este articulo se aborda la sincronizacion experimental del oscilador de Colpitts en tiempo real. Nuestra
aproximacion se realiza mediante la teoria de disefio de observadores en una configuracién maestro-esclavo, por lo
que el problema de sincronizaciéon caodtica puede plantearse como el disefio de un observador. Se utiliza un
observador polinomial para la sincronizacion del oscilador de Colpitts empleando desigualdades matriciales lineales.
Se realiza una comparacion con el observador de orden reducido y con el observador de alta ganancia con la
finalidad de verificar el desempefio del observador propuesto.

1. Introduction

consider synchronization time delayed systems; in
works [18], [19] consider directional and bidirectional

Synchronization in chaotic systems has been
investigated since its introduction paper of Pecora

and Carrol [1]. This research area has received a
great deal of attention among scientist in many fields
due to its potential applications mainly in secure
communications [2]-[7].

During the last years (almost two decades), many
different approaches related to chaos synchronization
have been proposed. See for instance, [8]-[10] in
which the authors propose the employment of
state observers, where the main applications
pertain to the synchronization of nonlinear
oscillators; in references [11]-[13] use feedback
controllers, which allow to achieve the
synchronization between nonlinear oscillators, with
different structure and order; in [14], [15] use
nonlinear backstepping control; in papers [16], [17]

linear coupling; papers [20], [21] use nonlinear
control; in [12] use active control; in [13], [22] use
adaptive control; in [23]{24] employ adaptive
observers and so on.

Now, we will mention a brief note about observer
theory. The design of observers for nonlinear
systems is a challenging problem that has received a
considerable amount of attention. Since the
observers developed by Kalman [25] and Luenberger
[26], several years ago for linear systems, different
state observation techniques have been propose to
handle the systems nonlinearities. A first category of
techniques consists in applying linear algorithms to
the system linearized around the estimated trajectory.
These are known as the extended Kalman and
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Luenberger observers. Alternatively, the nonlinear
dynamics are split into a linear part and a nonlinear
one. The observer gains then are chosen large
enough so that the linear part dominates over the
nonlinear one. Such observers are known as, high
gain observers [27]. And many other approaches
such as [28]-[30].

In this work the synchronization method is based on
a master-salve configuration [1]. The main
characteristic is that the coupling signal is
unidirectional, that is, the signal is transmitted from
the master systems (transmitter) to the slave system
(receiver), the receiver is requested to recover the
unknown (or full) state trajectories of the transmitter.
Therefore, the terminology transmitter-receiver is
also used. Thus, a chaos synchronization problem
can be regarded as observer design procedure,
where the coupling signal is viewed as the output
and the slave system is the observer [31]-[33].

As we can notice, there are several methods to solve
the synchronization problem from the control theory
perspective, in this work, we study the
synchronization in master-salve configuration [1] by
means of state observers based on differential
algebraic approach. These proposals are applied in
this paper to a Colpitts oscillator [34]. The Colpitts
oscillator has been widely considered for the
synchronization problem, see for instance [24], [35].

In this paper an exponential observer of polynomial
type for the synchronization problem is proposed.
We also have designed an asymptotic observer of
reduced order. Finally, for comparison purposes, we
construct a high-gain observer.

2. Receiver operating principle

Let us consider the following nonlinear system,

x = f(x,u)
y=Cx , xo=x(to) (1

where x € R", is the state vector; u € ]Rm', is the
input vector, m’' < n; f(-):R* x R™ — R" is locally
Lipschitz on x and uniformly bounded on u;y € R
is the output of the system. To show the relation
between observers for nonlinear systems and
synchronization we give the following definition.

Definition 1 (Exponential synchronization) The
dynamical system with state vector & € R"

X, % =%x(t) )

is in state of exponential synchronization with
system (1) if there exist positive constants i and ¢
such that

llx — 2| < & exp (—=§t)

In the master-slave synchronization scheme, x is
viewed as the state variable of the master system
and X is considered as the state variable of the
slave system. Hence, the master-slave system
synchronization problem between systems (1) and
(2) can be solved by designing and observer for
(1). In order to solve the synchronization problem
as an observation problem we introduce the
following observability property.

Definition 2 [40] (Algebraic observability
condition-AOC) A state variable x; € R is said to
be algebraically observable if it is algebraic over
R(u, y)!, that is, x satisfies a differential algebraic

polynomial in terms of {u, y} and some of their time
derivatives, i.e.,

Pi(x;,u, i, .., y,9,...) =0 (3)
with coefficients in R{u, y).

The system (1) can be expressed in the following
form,

x=Ax+¥Y(x,u)

y=Cx  xy=x(t) (4)

Where ¥(x,u) is a nonlinear vector that satisfies
the Lipschitz condition with constant ¢ that is:

IPCxu) —P@E Wl < ¢llx - X )
The observer for system (4) has the next form
X=AR+W(Q&,u) + X7, K(y — Cx)?1 (6)
Where X e R",and K; e R"for1 <i <m.

Let us consider the following assumptions:

' Ry, y) denotes the differential field generated by the
field R, the input u, the measurable output y, and the
time derivatives of u and y.
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Assumption 1. For A:=A-K,C, there is a
unique symmetric positive definite matrix P € R™"
which satisfies the following linear matrix inequality
(LMI):

—ATP—PA-1 ¢P]

[ P 1]70

where ¢ is the Lipschitz constant.

Assumption 2. Let us define M; := PK;C, then:
Anin(M; + MT) >0, for2<i<m.

Remark 1. By using the Schur complement (see

Chapter 11 in [38]) the LMI in Assumption 1 can be
represented as an algebraic Riccati equation:

ATP + PA+ $?PP+1<0,
or for some ¢ > 0
ATP +PA+ ¢?PP+1+¢cl =0

Remark 2. Assumption 2 is used to improve the
rate of convergence of the estimation error by
injecting additional terms (from 2 to m) which
depend upon odd powers of the output error.

In order to prove the observer convergence, we
analyze the observer error which is defined as

e = x — X. From Equations 4 and 6, the dynamics
of the observer error is given by:

m
é=Ae+F — Z K;(Ce)? 1
i=2

where A := A—K,C, and F := ¥(x,u) — ¥Y(X,u).

Now, we present a lemma which will be
useful in the convergence analysis.

Lemma 1 [39]: Given the system (4) and its
observer (6) with the error given by e = x —x. If
P =PT > 0 then:

2eTP[W(x,u) — P(X,u)] < p?eTPPe +eTe

The following proposition proves the observer
convergence.

Proposition 1. Let the system (4) be algebraically
observable and Assumption 1 and Assumption 2
hold. The nonlinear system (6) is an exponential
polynomial observer of the system (4); that is to
say, there are constants k > 0 and ¢ > 0 such that:

lle®Il < xlle(0)lexp (=&t)

&

where k = \/é, &= ik Amin(P), and B =
Amax (P).

Proof. We use the following Lyapunov function
candidate V = e”Pe

V =2¢TPe+eTPe
= eT[ATP + PAle + 2e"PF
m

—2eTp Z K;(Ce)?—1
i=2

using Lemma 1 we obtain:
V <eT[ATP + PA+ ¢*PP +I]e
m

—2eTp Z K;(Ce)?—1

i=2

Making some algebraic manipulations on the last
term of the above inequality, and taking into
account that Ce € R, we obtain:

V <eT[ATP + PA+ ¢*PP +I]e
m
- ZZ(Ce)Zi‘ZeTPKiCe
i=2

For simplicity, we define M; := PK,C, for2 <i<
m, then we have:

V <eT[ATP + PA+ ¢?PP + Ile — {(Ce)?*[e"M,e +
(e"M,e)T] + (Ce)*[e"Mze + (e"Mse)T] + -+ +
(Ce)*™2[e"Mye + (e"Mye)"]}

The above expression can be rewritten in a
simplified form:
V <el[ATP + PA + ¢p*PP +1]e
m

= ) (Ceyire M + M]le

i=2
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From Assumption 2, the second term in the right
hand side of above the inequality always will be
positive or zero, therefore:

V <eT[ATP + PA+ ¢?PP +1]e 7)
by Assumption 1 (and remark 1), we have:
V< —¢llell? (8)

We write the Lyapunov function as V = ||e||3, then
by the Rayleigh-Ritz inequality we have that:

allell* < llell? < Bllell?

©)

where  a:=21,,(P), and B :=Ap,(P)eR?

(because P is positive definite).

By using (9) we obtain the following upper
bound of (8):
V< —Zell? (10)

Taking the time derivative of V =|le||2 and
replacing in inequality (10), we obtain:

d €
—Jlellp < —=lle
—llell, lell

2B

Finally, the result follows with:

lle@Il < klle(0)|| exp(=¢t)

- B - £
wherex—\/:,andf—zﬁ.

3. Asymptotic reduced order observer

(11)

Now, let us consider the nonlinear system described
by (1). The unknown states of the system can be
included in a new variable n(t) and the following
new augmented system is considered:

x(t) = f (e, u,m)
n(e) = Alx, u)
y(t) = h(x)

(12)

where A(x,u) is a bonded uncertain function. The
problem is to reconstruct the variable n(t). This
problem is overcome by using a reduced order
observer. Before proposing the corresponding
observer we introduce some hypotheses:

Assumption 3 7 (t) satisfies the AOC (Definition 2).
Assumption 4 y is a C? real-valued function.
Assumption 5 A is bounded, i.e., |A| < M < oo.

Assumption 6. For t, sufficiently large, there is
K > 0, such that, lim sup;_, % =0.

The following lemma describes the design of a
proportional reduced order observer for system (1).

Lemma 2. If Assumptions 3 to 6 are satisfied, then
the system:

n=K@n-1 (13)
Is an asymptotic reduced order observer of free-
model type for system (12), where 7 denotes the

estimate of n and K € Rt determines the desired
convergence rate of the observer.

Remark 3. To reconstruct n(t) by using an
auxiliary state 7j(t) sometimes we need to use the
output time derivatives, but these may be
unavailable. To overcome this fact, an auxiliary
function completely artificial y is defined in such a
way that it cancels out all nonmeasurable terms.
This action defines a differential equation for y.
This equation is solved, then, y is substituted in the
differential equation of the estimated state and

finally the estimate of 7 is obtained.
We give the following immediate corollary.
Corollary 1. The dynamic system (13) along with

y = lp(x’ u, Y)J Yo = )/(0)! Y S Cl

constitute a proportional asymptotic reduced order
observer for system (12), where y is a change of
variable which depends on the estimated state 7,
and the state variables.

4. High gain-observer

We present a well-known estimation structure (high
gain observer) as a comparison with our proposed
schemes. Consider the class of nonlinear systems
given by (1). In this case, to estimate the state vector
x, we suggested a nonlinear high gain-observer with
the following structure:
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%= f(Ruw)+K(y—C®) (14) the unloaded L-C tank circuit. Then, the state
equations for Colpitts oscillator can be rewritten in

Where 2 € R*, %, = £(t,) and the observer high- the following form:

gain matrix is given by:

X, = —CXx3 — X, —dx;
_ 1 %X, = bx 17)
_ 1T _ o 2 1

K=S55"C", Sg= (9i+j—1 S”)ij=1...n X3 = —aexp(—x,) +ax; +a
and the positive parameter 6 determines the desired  where, a = b%, b= - éov ,C = wVZI ,d= %
convergence velocity. Moreover, S, = S, > 0, should ! v ore 0
be a positive solution of the algebraic equation:

OV,

9 6 i
59<E+—1)+(ET+—1>59=CTC <’

2 2 <R

_ (0 h-inea 9
E—(O . ) (15) IL\L%L
5. Experimental results i T "
T l
As was previously mentioned, the integrated These [ \f Y, Fr = Yy
proposals are applied to a Colpitts oscillator [34]. - o
The Colpitts oscillator has been widely considered : (JL‘\‘ . Vout
for the synchronization problem, see [24, 35]. N Cs Ve
In this work we considered the classical = ’ i
configuration of the Colpitts oscillator [36]. The
circuit contains a bipolar junction transistor ()
2N2222A as the gain element (Figure1(b)), and a
resonant network consisting of an inductor and two
capacitors (Figure 1(a)).
P (Figure 1(a)) Ve N .

The Colpitts circuit is described by a system of
three nonlinear differential equations, as follows:

LI, = V¢, — Ve, —RI, + Vee
CVe, =1, — Iy (16)
C1VC1 = _f(VCZ) + IL

where f(-) is the driving-point characteristic of the
nonlinear resistor, this can be expressed in the

formIy = f(Vc,) = f(—Vgg)- In  particular, we
Ve

havef (Vc,) = I,exp (—V—2 . :
T b)

o9
=
o

We introduce the dimensionless state
variables (x;,x,,x3), and choose the operating
point of (16) to be the origin of the new coordinate
system. In particular, we normalize voltages,

Figure 1. Colpitts oscillator (a) Circuit configuration (b)
Model of the Bipolar Junction Transistor (BJT)

. . According to Definition 2, it is evident that system
currents and time with respect toVier =Vr.  (47) s algebraically observable with respect to the
lrer = Io and tor = 1/w,, respectively, where wo = gutput y = x,, because the unknown states can be
1/\/LC,C,/(Cy + C3), is the resonant frequency of  rewritten as:
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rn=2=1 (18)
111.. da .

x3=—;[;y+;y+cy] (19)

hence, Colpitts oscillator is algebraically

observable with respect to the selected output
y = x2.

5.1 Synchronization of the Colpitts oscillator
employing the exponential polynomial observer

For the implementation of the observer we first
rewrite (17) in the form (4),

—-d —-c¢ —c
x=|b 0 0

a 0 0

0
0
—aexp(—x,) +a

X+ (20)

Figure 2. Implementation of the
Colpitts circuit (master system)

y=[0 1 0]x

Applying Proposition 1, we have

-d —-c -c 0
3?=[b 0 0|x+ 0
a 0 0 —aexp(—%,) +a
m k1,i
+ ) |kzif(f0 1 0]e)%!
i=1 k3,l'

hence, the state observer is rewritten as.

A

x1 = _C£3 - sz - dfl + k3'181‘2 + k3‘2(31,2)3 + -
2m-1
+ k3 m(e)

X, = bRy + kg5 + kyp(er2)® +
+k2,m(31,2)

2m-1

(21)

J;5\3 = aX; —aexp(—%;) ta+ k1,1e1,2 + k1,2(31,2)3
+ ot kg (e 2)?™ !

we verified the real time performance of the
exponential observer by using the WINCON
platform. To achieve the synchronization in real
time, in WINCON the scheme (21) in the master-
slave configuration was implemented.

Figure 2 shows the real implementation of the
Colpitts circuit. The circuit parameters are:

L=100puH;C, = C, = 47nF,R =45Q, I, = 5mA.
Using the circuit parameter we obtain a=b =
6.2723,¢ = 0.0797, and d = 0.6898.

The nonlinear term W(x) in (20), satisfies the
Lipschitz condition and is considered as follows

0
Y(x) = I 0

—aexp(—x,) +a

It is necessary to calculate the Lipschitz constant ¢
introduced in (5) over the bounded set

Q:{x € R3| |x1| <M1,|x2| <M2,|X3| <M3}(22)

considering the Jacobian of ¥(x) as

0 0 0
29 lo 0 ol (23)
0 aexp(—x;) 0
it can be concluded that?
”a‘:—fcx) L= 3 max{0, a exp(—x,)}, aeR* (24)
From (22), it is obvious that the following

conditions hold for all the points in the bounded
set Q.

aexp(—x,) < aexp(M,)
= max{a exp(—x;)},a € R*

(25)
hence:
= _<3aexp(My) (26)

? Let us consider the matrix A = [aij]1<ij<n,then (see
chapter 5in [38] ) [lAll» = nmax;<; j<n |a;jl.
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With (22)-(26) a Lipschitz constant that satisfies
the Lipschitz condition (5) is defined as follows

¢ = 3 aexp(M,)

In this case M; =3, M,=01 My=6, and
a=62723,=> ¢ =20.7959

Following the observer (21), for m =2, and
solving the LMI given by assumption 1, the
observer gains K; and K, and positive definite
matrix P are as follows

10.2130 3
K, = [16.1211],K; = 2],
10.1500 3
38.8560 —36.7794 19.4606
P =|(-36.7794 379331 —20.7898(>0
19.4606 —20.7898 16.4869

With eigenvalues A,(P) = 1.3151, 1,(P) = 5.2514,
and 1;(P) = 86.7095.

The performance index (quadratic synchronization
error) of the corresponding synchronization
process is calculated as

t
J(t) = le(®)13, Qo =1

t+ 0.001f0

Figures. 3(a) and (c) show the obtained results by
using the exponential polynomial observer (21), it
is clear that the synchronization is achieved fairly
acceptable even with the noisy measurements.
The Colpitts circuit starts in x(0) =[0 0 0]” and
the arbitrary initial conditions for the observer
are£(0) =[2.1 -0.1 1,506]". Figure 3(d) shows
the performance index of the synchronization,
which depicts an exponential behavior.

5.2 Synchronization of the Colpitts oscillator by
means of the asymptotic reduced order observer

Let us consider the normalized system of the
Colpitts oscillator. We assume that the output
system is y = x,, therefore, the slave system
consists in two estimation structures to achieve
synchronization with the master system. Such
structures are obtained as follows: Firstly, verify
that the master system (Colpitts oscillator) is
algebraically observable, and second, by using

(13), we construct the observer for the unknown
states. Previously, we have verified that master
system (Colpitts oscillator) is algebraically observable
(see Equations (18) and (19). Then, both unknown
states of the master system are algebraically
observable, and therefore, we can construct the
observers based on Lemma 2 and Corollary 1.

For x, the observer is given by:

KZ

Y3 = _73)’ — Kzy3
(27)
. _ K
L= Y +7v3
and for x;, we have
Va= —Kulya ';KAL y]
Vs = [Ks — d] C_Z [va + Ko y] — Ksy — Ksvs (28)
~ K
3= =2+ Kyl +7s
Therefore, (27) and (28) constitute the slave

system. Now, we present some experimental
results for the synchronization of the Colpitts
oscillator by using the asymptotic reduced order
observer (27) and (28). Figures 4(a) and (b) show
the obtained results for the initial conditions
%1 =—2.498 and X; = 1.506 in the schemes (27)
and (28), respectively. As we can notice, the
synchronization results achieved with the reduced
order observer are good. Figure 4(c) presents the
phase portrait, where the chaotic behavior of the
Colpitts oscillator can be clearly observed. Finally,
Figure 4(d) illustrates the performance index, which
tends to decrease.

[ [=—— clave
master

nitial condition for slave: 2.1

I 1 L L L L
200 300 400 500 800 700 800 900 1000

time (ms)

L
0 100

(a)
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————=slave
maslter (measurable output)

_initial condition for slave: 1.506

2r 4
ol - M\v WL
0.0 ok
o =
e abk
-0.05} s 4
-0.1 Al
o 2 4 B -] 10
3t 4
-0 I-—Islewfeiniliallcundiljlon.‘ -O.rI ) ) . ) ) - -0.1
Q 100 200 300 400 500 600 700 800 900 1000 4l E ) \ ) ‘ . , ‘ ) ,
time (ms) “a 100 200 300 400 500 €00 70O 800 900 1000
tlime (ms)
(b)
(c)

—mmee quad. synch. error of x,
e U, SYNCh. BrTOr o1 X, J

v QUAM, sYNCH, 21TOT Of X,

.
4] 10 20 30 40 50 B0 70 B0 90 100
time {ms)

(d)

Figure 3. Real-time synchronization of Colpitts oscillator employing observer (21): (a)
variables x; and %, (b) synchronization of variables x, and %, (c) synchronization of
variables x; and X3, and (d) performance index

— slave initial condition: 1.5086

2
o : 2 4 s a8 10 2
_— initial condition for slave: -2 498 1
i , \ . , L . . . ; . a4l L L L L ! ! L L L L
0 100 200 300 400 500 600 700 8O0 900 1000 100 200 300 400 500 €00 70O BOO 900 1000
time (ms}) fime (ms)
(a) (b)
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—-——quad, synch. error of x,,

09
‘ quad. synch. error of X,

Il L L L L
1 0.5 ] 0.5 1 15 2 2.5 3

(e)

L L L L . L . L L
o 10 20 30 40 50 80 70 80 80 100
time (ms)

(d)

Figure 4. Real-time synchronization of Colpitts oscillator using reduced-order observer (28) and (27):
(a) synchronization of coordinates x; and %;, (b) synchronization between x; and %5, (c)
Phase portrait of the master system (x; (horizontal) versus x; (vertical))
and the slave system (¥; and x,), and (d) performance index

6. Synchronization with the high gain observer

The matrix Sy >0,S, =S}, that satisfies the
algebraic Riccati equation (15) for a third order
system (n = 3), is given by:

X 1
[ 62 63
1 2 1
1 1 6
3 et 65
and its corresponding inverse matrix is,
39 362 63
Sgt =362 563 20* (30)
63 20* @°

Then the high gain-observer for Colpitts system
(17) is as follows:

. 5
X1 = —CX3 — X, —d%; +563(y - %)
X, = b%; +360%(y — &,) (31)
%3 = a%; —aexp(—%,) +a
+( 362 5d03 2 94) X
be be (v —X%2)

Figure 5 depicts the synchronization between
Colpitts oscillator (17) and its high gain observer
(31). In order to obtain exponential convergence
we have used 6 = 100. As we can notice, the

performance on the high-gain observer is not good
in comparison with the exponential polynomial
observer and with the proportional reduced-order
observer. An important advantage of the proposed
methodologies is that the magnitudes of the
observer gains are smaller than the ones used in
the high-gain observer.

7. Conclusion

In this paper we tackled the synchronization problem
based upon observer's theory. As well as, its main
contributions, we show the real-time synchronization
in the Colpitts oscillator by using two observer
structures: An exponential polynomial observer and
an asymptotic reduced order observer. For
comparison purposes we implemented a high-gain
observer. Finally, some experimental results show
the effectiveness of the proposed methodologies.

1 s

H 0 2 El [ a 10
B
EC
i L L L L
o 100 200 300 400

~ initial condition for slave: -2 498

L L L L : L
500 &00 700 B00O 900 1000

time (ms)

(a)
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2+ __— slave initial condition: 1.506 |

ok o8t
D?;

oaf
-3r of =
-0

| . L L L L L L L L .
o 100 200 300 400 500 600 70D BOO 900 1000

time (ms)

(b)

=]

1 4
4+ J
3 4
2 4
1- 4
ar B — 4
s i
2r A o.b8 o7 613

slave initial conditions: 1,506, -2,498——&~

a ' . | L . . .

Bl 0.5 0 0.5 1 1.5 2 2.5 <l

(e)

==——=quad. synch. error of x,

quad. synch. error of X,

o4 T e L

0 ! L L L . L L L L
a 10 20 30 40 50 &0 70 an a0 100

lime (ms)

(d)

Figure 5. Synchronization between Colpitts oscillator and
its high-gain observer: (a) synchronization of coordinates
x; and x4, (b) synchronization between x; and X3,(c)
Phase portrait of the master system (x5 (horizontal)
versus x, (vertical)) and the slave system ( X5 versus %),
and (d) performance index
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