Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Agrociencia
versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195
Agrociencia vol.41 no.6 Texcoco ago./sep. 2007
Natural Renewable Resources
Productivity index for multi species sites through distance functions in forest sites
1 Centro de Investigación y Docencia Económicas. División de Economía. Carretera México-Toluca Núm. 3655. 01210. Colonia Lomas de Santa Fé. México, D. F. (juanmanuel.torres@cide.edu).
2 INIFAP. 34000. Durango, Durango. (agvalles@hotmail.com.mx)
With the purpose of estimating the relative productivity of forest sites with timber use and various species, a methodology is described based on an efficiency index derived from radial and directional distance functions with reference to one or various species. In addition, a methodology is presented for isolating the effect of density on the estimation of site productivity, used to compare the traditional estimations of site index with the estimations of relative efficiency derived from distance functions. Results show that the evaluation of productivity in multi species stands is relative to the composition of the stand, given that the higher the diversity of species, the more efficiently the site tends to be used. The traditional estimations of site index are not good estimations of total productivity in sites with various species, and the best estimations of efficiency in this type of site, in terms of their approximation to real productivity, are those derived from estimations of radial distance using all of the species in the site.
Key words: Efficiency; distance function; inter species site index; forest productivity
Con el propósito de estimar la productividad relativa de sitios con uso forestal y varias especies se describe una metodología basada en un índice de eficiencia derivado de funciones de distancia radiales y direccionales con referencia a una o varias especies. Además se presenta una metodología para aislar el efecto de la densidad en la estimación de la productividad de sitios, usada para comparar las estimaciones tradicionales de índice de sitio con las estimaciones de eficiencia relativa derivadas de funciones de distancia. Los resultados muestran que la evaluación de la productividad en rodales multiespecíficos es relativa a la composición del rodal dado que al aumentar la diversidad de especies el sitio tiende a usarse más eficientemente. Las estimaciones tradicionales de índice de sitio no son buenas estimaciones de la productividad total en sitios con varias especies y las mejores estimaciones de eficiencia en este tipo de sitios, en términos de su aproximación a la productividad real, son las derivadas de estimaciones de distancia radial usando todas las especies en el sitio.
Palabras clave: Eficiencia; funciones de distancia; índices de sitio interespecíficos; productividad forestal
Literatura citada
Arnade, C. 1998. Using a programming approach to measure international agricultural efficiency and productivity. J. Agric. Econ. 49:67-84. [ Links ]
Avery, T. E., and H. E. Burkhardt. 1994. Forest Measurements. 4th Edition. McGraw Hill, Inc. New York. 475 p. [ Links ]
Borders, B. E., R. L. Bailey, and K. D. Ware. 1984. Slash pine site index from polymorphic model by joining (splining), nonpolynomial segments with an algebraic difference method. For. Sci. 30(2): 411-423. [ Links ]
Chambers, R. G., Y. H. Chung, and R. Färe. 1996. Benefit and distance functions. J. Econ. Theory: 407-419. [ Links ]
Clutter, J. L., J. C. Fortson, J. C. Piennar, L. V. Brister and R. L. Bailey. 1983. Timber Management: A Quantitative Approach. Wiley. New York. 333 p. [ Links ]
Cornes, R. 1992. Duality and Modern Economics. Cambridge Univ. Press. 290 p. [ Links ]
Debreu, G. 1951. The coefficient of resource utilization. Econometrica 19: 273-292. [ Links ]
Dixon, B. L., and R. H. Hornbaker. 1992. Estimating the technology coefficients in linear programming models. Am. J. Agr. Econ. 74: 280-290. [ Links ]
Färe R., and D. Primont. 1995. Multi-Output Production and Duality: Theory and Applications. Kluwer Academic Pub. Boston, USA. 263 p. [ Links ]
Färe, R., and S. Grosskopf. 2000. Theory and applications of directional distance functions. J. Productivity Analysis 13: 93-103. [ Links ]
Färe, R., S. Grosskopf, M. Norris, and Z. Zhang. 1994. Productivity growth, technical progress and efficiency change in industrialized countries. Am. Econ. Review 84: 66-83. [ Links ]
Just, R. E., D. Zilberman, and E. Hochman. 1983. Estimation of multicrop production functions. Am. J. Agr. Econ. 65: 770-780. [ Links ]
Just, R. E., D. Zilberman, E. Hochman, and Z. Bar-Shira. 1990. Input allocation in multicrop systems. Am. J. Agr. Econ. 72: 200-209. [ Links ]
Lence, S. H., and D. J. Miller. 1998. Recovering output-specific inputs from aggregate input data: A generalized cross-entropy approach. Am. J. Agr. Econ. 80: 852-857. [ Links ]
Lotka, A. J. 1925. Elements of Physical Biology. Williams and Wilkins, Baltimore. 219 p. [ Links ]
Mittelhammer, R. C., S. C. Matulich, and D. Bushaw. 1981. On implicit forms of multiproduct-multifactor production functions. Am. J. Agric. Econ. 63: 164-168. [ Links ]
Murtagh, B. A., and M. A. Saunders. 1998. MINOS 5.5. User’s Guide. Department of Operations Research, Stanford University, Stanford, USA. 150 p. [ Links ]
Nin, A., Ch Arndt, T. W. Hertel, and Paul V. Preckel. 2003. Bridging the gap between total and partial factor productivity measures using directional distance functions. Am. J. Agr. Econ. 85(4): 928-942. [ Links ]
Oliver, C. D., and B. C. Larson. 1996. Forest Stand Dynamics. Mc GrawHill. New York. 467 p. [ Links ]
Olson, D. F., and L. Della-Bianca. 1959. Site index comparisons for several tree species in the Virginia-Carolina Piedmont. USDA For. Serv., Southeast For. Exp. Stn. Sta. Paper 104. 9 p. [ Links ]
Paris, Q. 1989. A sure bet on symmetry. Am. J. Agr. Econ. 71: 344-351. [ Links ]
Paris, Q., and R. E. Howitt. 1998. An analysis of ill-posed production problems using maximum entropy. Am. J. Agr. Econ. 80: 124-138. [ Links ]
Payandeh, B., and Y. Wang. 1994. Relative accuracy of a new base-age invariant site index model. For. Sci. 40(2): 341-358. [ Links ]
Pretzsch, H. 2003. The elasticity of growth in pure and mixed stands of Norway spruce (Picea abies [L.] Karst.) and common beech (Fagus silvatica L.). J. For. Sci. 49(11): 491-501. [ Links ]
Ray, S. 1985. Methods for estimating the input coefficients for linear programming models. Am. J. Agr. Econ. 67: 660-665. [ Links ]
Romero, C. 1985. Multi-objective and goal programming approaches as a distance function model. J. Opt. Res. Soc. 36(3): 249-251. [ Links ]
Shephard, R. W. 1970. Theory of Cost and Production Functions, Princeton University Press. Princeton. New Jersey. 247 p. [ Links ]
Simar, L. 1996. Aspects of statistical analysis in DEA-type frontier models. J. Productivity Analysis 7(2-3): 177-185. [ Links ]
Torres R., J. M., O. S. Magaña T., y C. Rodríguez F. 1992. Evaluación de la productividad forestal. In: Reporte Técnico, Programa de Modernización del Segundo Estudio Dasonómico de los Bosques del Estado de México. PROBOSQUE, Rancho Guadalupe, Edo. de México. pp: 237-269. [ Links ]
Valles G., A. G., J. M. Torres R., A. Velázquez M., y C. Rodríguez F. 1998. Relación de nueve índices de competencia con el crecimiento en diámetro de Pinus cooperi Blanco. Agrociencia 32(3): 255-260. [ Links ]
Zeide, B. 2004. Optimal stand density: a solution. Can. J. For. Res. 34: 846-854. [ Links ]
Received: November 2006; Accepted: April 2007