SciELO - Scientific Electronic Library Online

 
vol.18 issue2Analysis of Chilean sanitary indicatorsRisk factors for thyroid cancer. Case-controls study author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Horizonte sanitario

On-line version ISSN 2007-7459Print version ISSN 1665-3262

Horiz. sanitario vol.18 n.2 Villahermosa May./Aug. 2019

http://dx.doi.org/10.19136/hs.a18n2.2689 

Artículo original

Distribución de Aedes albopictus (Skuse 1895) en Tabasco, México durante 2015-2018

Distribution of Aedes albopictus (Skuse 1895) in Tabasco México from 2015 to 2018

Distribuição de Aedes albopictus (Skuse 1895) em Tabasco México 2015-2018

Répartition d’Aedes albopictus (Skuse 1895) á Tabasco au Mexique de 2015 à 2018

Luis Miguel Rodríguez Martínez1  * 
http://orcid.org/0000-0001-5185-5197

Fernando Izquierdo Aquino2 
http://orcid.org/0000-0001-5950-7584

Mariana Irina González Fernández3 
http://orcid.org/0000-0001-7453-1371

Fabian Correa Morales4 
http://orcid.org/0000-0002-6193-1242

Cassandra González Acosta5 
http://orcid.org/0000-0001-7976-0798

1Bachelor’s degree in Biology. Entomological Research Unit. Ministry of Health of Tabasco, Mexico.

2General Practitioner. Undersecretary of Public Health. Ministry of Health of Tabasco, Mexico.

3Ecologist Engineer. Master of Science in Environmental Health. PhD in Public Health. Health Services of Morelos / Oaxtepec Regional Vector Control Center. México.

4Bachelor’s degree in Biology. Master’s degree in Public Health. Federal Ministry of Health. Vice director of the National center for prevention programs and Disease Control. Mexico.

5Bachelor’s degree in Biology. Master of Health Sciences with Major Area in Infectious Disease. Federal Ministry of Health. Coordination of Entomological Research Units of the National Center for Prevention Programs and Disease Control. México.

Resumen:

Objetivo:

Determinar la distribución de Aedes albopictus (Skuse 1895) en Tabasco México 2015-2018.

Material y métodos:

Se realizó un estudio descriptivo observacional transversal con un componente cuantitativo, durante enero de 2015 a julio 2018 se enviaron al laboratorio estatal de salud pública un total de 4,090 muestras de larvas de mosquitos de Aedes sp. para identificación taxonómica proveniente de los 17 municipios de Tabasco con 38 localidades prioritarias, las cuales fueron colectadas del sistema de monitoreo estatal de vigilancia entomológica con ovitrampas.

Resultados:

3,882 (94.91%) corresponden a Aedes aegypti y 208 (5.08%) a Aedes albopictus. La distribución de Aedes albopictus se identificó en 9 municipios que representa 52.94% de los municipios afectados con presencia del vector y 44.74% de localidades muestreadas positivas en el estado de Tabasco.

Conclusiones:

Con el presente estudio se logró determinar la presencia y distribución de Aedes albopictus, cuya dispersión en el estado se encuentra en progreso ya que podría colonizar los 17 municipios que componen el estado por las características de clima y vegetación, lo que plantea nuevos retos en salud pública en cuanto a la prevención y control de los arbovirus.

Keywords: Aedes albopictus; introduced species; Arbovirus; Disease vectors.

Abstract:

Objective:

To identify the distribution of Aedes albopictus (Skuse 1895) in Tabasco Mexico from 2015 to 2018.

Material and Method:

A cross-sectional observational descriptive study with a quantitative component was carried out. During January 2015 to July 2018, a total of 4,090 samples of Aedes sp. mosquito larvae were sent to the state public health laboratory for taxonomic identification from the 17 municipalities of Tabasco with 38 priority localities, which were collected from the state monitoring system of entomological surveillance with ovitraps.

Results:

Of the samples collected, 3,882 (94.91%) corresponded to Aedes aegypti and 208 (5.08%) to Aedes albopictus. The distribution of Aedes albopictus was identified in 9 municipalities representing 52.94% of affected municipalities with the presence of the vector and corresponds to 44.74% of localities sampled positive in the state of Tabasco.

Conclusions:

In this study it was determined the presence and distribution of Aedes albopictus, its dispersion in the state is in progress since it could colonize the 17 municipalities of the state. Due to the climate and vegetation characteristics, which poses new challenges in public health in terms of the prevention and control of arboviruses.

Keywords: Aedes albopictus; introduced species; Arbovirus; Disease vectors.

Resumo:

Objetivo:

Analisar indicadores de saúde, com base nos resultados obtidos pelas unidades de saúde no Chile, durante o período 2010-2014. Materiais e métodos: Um estudo descritivo é realizado e múltiplas correspondências são aplicadas. São utilizados 75 indicadores básicos de saúde publicados pelo Ministério da Saúde, indicadores demográficos, estatísticas vitais, riscos para a saúde e acesso aos cuidados. Cada indicador foi atribuído um resultado esperado e comparado com o resultado real obtido, por região e país.

Resultados:

Os indicadores de risco para a saúde foram caracterizados principalmente porque, em 50% ou mais das regiões analisadas, obtiveram resultado semelhante ao esperado. Diferentemente dos indicadores estatísticos vitais, onde 49% e menos das regiões tiveram resultado semelhante ao esperado no mesmo período. Ao mesmo tempo, os indicadores demográficos foram associados an um resultado esperado positivo e, ao contrário, os indicadores de acesso ao atendimento foram associados an um resultado esperado negativo no período analisado.

Conclusão:

Devido ao impacto na população, qualquer indicador de gestão em saúde deve ser considerado pelos gestores das redes de saúde para orientar as estratégias a serem implementadas nos estabelecimentos que compõem as redes públicas de saúde.

Palavras chave: Gestão em saúde; Estratégia; Indicadores de gestão

Résumé :

Objectif:

Analyser les indicateurs de santé sur la base des résultats obtenus par les établissements de santé au Chili durant la période 2010-2014.

Matériel et méthodes:

L’étude est descriptive et inclut de plus l’’analyse des correspondances multiples en utilisant 75 indicateurs sanitaires de base publiés par le Ministére de la Santé: indicateurs démographiques, statistiques de l’état civil, risques pour la santé et accés aux soins. Un résultat attendu a été attribué á chaque indicateur et comparé au résultat réel obtenu, par région et par pays.

Résultats:

Les indicateurs de risques pour la santé se sont caractérisés principalement par le fait qu’ils ont obtenu un résultat similaire á celui attendu dans 50% ou plus des régions analysées. Par contre, les indicateurs de statistiques de l’état civil ont donné, pour la meme période, un résultat similaire á celui attendu dans 49% ou moins des régions. Dans le meme temps, les indicateurs démographiques se sont associés á un résultat attendu positif et, au contraire, les indicateurs d’accés aux soins se sont associés á un résultat attendu négatif pour la période analysée.

Conclusions:

En raison de l’impact sur la population, tout indicateur de gestion de la santé devrait etre pris en compte par les gestionnaires de réseaux de santé afin d’orienter les stratégies á mettre en reuvre dans les établissements constituant les réseaux de soins de santé publique.

Mots-clés: Gestion en santé; Stratégie; Indicateurs de gestión

Introducction

The Asian tiger mosquito, Aedes albopictus (Skuse, 1894), is an invasive species native is s an invasive exotic species with a strong genetic, physiological and ecological plasticity1. This species is attributed characteristics and adaptive advantages over the other species, which make it a successful invader. One of its characteristics is that its eggs resists more or less to dry conditions, which allows them to survive in inhospitable environments, in addition to facilitating its transport by humans. Perhaps its greatest importance is its association with man, because the alterations caused by humans open new habitats, what benefits them, because they have characteristics of invasive species.

Ae. Albopictus has colonized all continents except Antarctica during the last 30-40 years3. It was first found in the continental U.S. in August, 1985, in Houston, Texas4, and is currently found in 866 counties in 26 states, and was recently reported in Southern California5,6.

The first records of Ae. albopictus in Mexico were conducted in the state of Tamaulipas 19887, Coahuila in 19948,9, later in 19948,9 the first infested states in the Gulf of Mexico Veracruz10, and Nuevo León 200111. In September 2003, larvae samples in Tapachula, Chiapas12. The species was reported in the southern center of the countiy in Morelos13. In 2012, the presence of the species was confirmed in Cancún, Quintana Roo14. Currently, Ae. albopictus is registered in 12 states of Mexico (Chiapas, Coahuila, Hidalgo, Morelos, Nuevo León, Oaxaca, Puebla, Querétaro, Quintana Roo, San Luis Potosí, Tamaulipas and Veracruz)15. Recently the first record of Ae. albopictus in Tabasco reported in June 2018 in the Municipalities of Huimanguillo, Teapa, Tacotalpa and Villahermosa16.

The epidemiological importance of Ae. albopictus is that it can transmit, experimentally or naturally, at least 22 arboviruses, most of these are of importance in human health17. Among these, the transmission of the four dengue serotypes and eastern equine encephalitis viruses and Japanese, as well as the Zika, Chikungunya and West Nile virus are of particular interest. In addition, it has been documented that it can transmit the Yellow Fever virus, which constitutes it as a vector between the sylvatic and urban transmission cycles. Additionally, in endemic areas for dengue, in which cases of Yellow Fever occur, there is a potential risk that this disease will be urbanized18.

For some viruses such as Dengue, Yellow Fever, Potosí and La Crosse, it has been experimentally demonstrated that Ae. albopictus can transmit them via transovarial to their offspring. In particular, in the transovarial transmission of the Dengue virus it has been found that it can transfer the four serotypes in a more efficient way than the one exhibited by Ae. aegypti19,20. Therefore, the objective of this work was to determine the presence and distribution of Ae. albopictus in Tabasco, Mexico in the period of January 2015- July 2018.

Material and methods

A transversal observational descriptive study with a quantitative component was carried out. From January 2015 to July 2018, a total of 4090 samples of Aedes sp. mosquito larvae were sent to the state public health laboratory for taxonomic identification. Each one from the 17 municipalities of Tabasco with 38 priority locations that included the municipal capitals and the main towns, which were collected from the state monitoring system of entomological surveillance using ovitraps (n = 6929), installed in the state.

The biological material collected from the ovitraps was selected according to a schedule ordered by municipality and locality, then in order to hat eggs, they were immersed in dechlorinated water at an average temperature of 27 ° C, 10 pellones in trays of 5L of volumetric capacity, from 1 to 3 days the larvae hatched to have a size of 2nd instar. They were placed in pooles of 50 larvae which tropical fish flakes of the brand BIOMAA® were added as food with the following content mínimum Protein 42.0%, mínimum Fat 5.0%, maximum Fiber 6.0%, maximum Ash 6.0%, maximum Humidity 8.0% and they were bred until the 4th instar for taxonomic identification in an average of 6 days. Methodology used for the immature stages was the guide for breeding and maintenance of colonies of Aedes sp. (DIPTERA: CULICIDAE :) under insectary conditions, in the entomological research unit21, samples were sent under the normative criteria of the state public health laboratory in 10 ml test tubes and preserved in 70% alcohol, for its taxonomic identification, a “HUND WETZALAR” optical microscope with 10-40X achromatic objective ranges was used, following the dichotomous keys for the taxonomic identification following the dichotomous keys for taxonomic identification of common mosquito larvae in urban and suburban areas of the Mexican republic22.

Results

The distribution of Ae. albopictus in the state of Tabasco, was identified in 17 localities (44.74%) of 9 municipalities representing 52.94% and at risk (figure 1). Of 4090 samples processed, 3882 (94.91%) correspond to Ae. aegypti and 208 (5.08%) to Ae. albopictus. In the municipality of Huimanguillo, it was detected in 4 localities (1.25%) followed by Cárdenas with 3 localities (1.15%) and Tacotalpa with 2 localities (1.37%). Table 1 shows the detection of Ae. albopictus in chronological order.

Source: Own elaboration based on the Entomological Research Unit of Tabasco.

Figure 1. Distribution of Aedes albopictus in the state of Tabasco, Mexico, 2015-2018, from entomological surveillance with ovitraps. 

Table 1 Detection of Aedes albopictus in the State of Tabasco in chronological order. Only sample data confirmed by the State Laboratory of Public Health are presented. 

Municipality Locality Detection Date Coordinates
Lat Long
Huimanguillo San Manuel March 2015 17°39'03.24''N 93°22'54.84''W
Paraíso Paraíso January 2016 18°24'00.31''N 93°12'25.01''W
Cárdenas Cuauhtemoczin January 2016 18°12'24.90''N 94°07'35.90’’W
Huimanguillo La Venta February 2016 18°05'32.08''N 94°02'23.50’’W
Comalcalco Comalcalco May 2016 18°16'48.00''N 93°13'47.28’’W
Tacotalpa Tapijulapa July 2016 17°27'54.72''N 92°46'35.40''W
Paraíso Puerto Ceiba August 2016 18°24'37.61''N 93°10'29.54''W
Teapa Vicente Guerrero Lerma November 2016 17°31'02.12''N 92°55'27.00''W
Centro Villa Luis Gil Pérez February 2017 17°52'12.31''N 93°04'21.70''W
Cunduacán Cunduacán February 2017 18°04'05.46''N 93°11'05.79''W
Huimanguillo Villa Estación Chontalpa March 2017 17°40'07.56''N 93°28'59.87''W
Huimanguillo Huimanguillo March 2017 17°49'22.38''N 93°23'42.39''W
Tacotalpa Cerro Blanco April 2017 17°25'15.63''N 92°47'38.83''W
Cárdenas Villa Benito Juárez September 2017 18°10'50.74''N 93°54'34.87''W
Cunduacán 11 de febrero October 2017 18°06'10.23''N 93°19'10.37''W
Cárdenas Cárdenas July 2018 18°00'01.06''N 93°22'33.16''W
Jalpa de Méndez Jalpa de Méndez July 2018 18°09'10.47''N 93°07'31.55''W

Source: Own elaboration based on the Entomological Research Unit of Tabasco.

Table 2 shows the samples collected and sent from the 17 municipalities and 38 localities with entomological surveillance with ovitraps in the period January 2015- July 2018.

Table 2 Distribution of positive samples for Ae. albopictus, by municipality and locality in the state of Tabasco, 2015-2018 

Municipalities Localities Total Larvae Ae. aegypti Ae. aegypti % Ae. albopictus Ae. albopictus %
Balancán Balancán 111 111 2.71 0 0
El triunfo 107 107 2.62 0 0
Cárdenas Cárdenas 107 103 2.52 4 0.1
Villa Benito Juárez 93 90 2.2 3 0.07
Cuauhtemoczin 120 80 1.96 40 0.98
Centla Centla 139 139 3.4 0 0
Vicente guerrero 104 104 2.54 0 0
Centro Villahermosa 174 174 4.25 0 0
Rio viejo 95 95 2.32 0 0
Macultepec 106 106 2.59 0 0
Ocuiltzapotlan 103 103 2.52 0 0
Luis Gil Pérez 96 94 2.3 2 0.05
Comalcalco Comalcalco 96 95 2.32 1 0.02
Villa Tecolutilla 148 148 3.62 0 0
Cunduacán Cunduacán 198 175 4.28 23 0.56
11 de febrero 108 103 2.52 5 0.12
E. Zapata E. Zapata 96 96 2.35 0 0
Huimanguillo Huimanguillo 105 101 2.47 4 0.1
Villa Chontalpa 86 83 2.03 3 0.07
San Manuel 164 129 3.15 35 0.86
Villa la venta 85 76 1.86 9 0.22
Jalapa Jalapa 111 111 2.71 0 0
Jalpa Mdez. Jalpa Méndez. 113 105 2.57 8 0.2
Jonuta Jonuta 90 90 2.2 0 0
Macuspana Benito Juárez 107 107 2.62 0 0
Cd. Pemex 96 96 2.35 0 0
Macuspana 95 95 2.32 0 0
Nacajuca Nacajuca 86 86 2.1 0 0
Bosques de Saloya 106 106 2.59 0 0
Paraíso Bellote 55 55 1.34 0 0
Puerto Ceiba 132 131 3.2 1 0.02
Paraíso 142 129 3.15 13 0.32
Tacotalpa Tacotalpa 120 120 2.93 0 0
Tapijulapa 119 81 1.98 38 0.93
Cerro Blanco 18 0 0 18 0.44
Teapa Vicente guerrero 1 0 0 1 0.02
Teapa 125 125 3.06 0 0
Tenosique Tenosique 133 133 3.25 0 0
Total 38 4,090 3,882 94.91 208 5.09

Source: Own elaboration based on the Entomological Research Unit of Tabasco.

Discussion

The present study shows the rapid dispersion and adaptation of Aedes albopictus, an invasive exotic species in the state of Tabasco. In a span of 3 years, it has been possible to establish in 52.94% of the municipalities that are part of the state and its arrival in the state is not surprising due to favorable factors for its reproduction; as the warm humid climate with abundant precipitation and prevalence of aquatic vegetation, as well as the proximity to the state of Chiapas12, place where the vector is already present.

Aedes albopictus is a species native to the jungle that has been adapted to the urban environment, their preferential breeding places are the natural ones with extensive vegetation and humidity, which has taken advantage of the bamboo stumps, armpits of plants (bromeliads) and in hollows of trees and stones23. When this species enters the urban environment, it can easily inhabit artificial deposits such as pots, vases, tires and cans24.

The results are consistent with recently published by Ortega- Morales et al16 and includes the municipalities of Cardenas, Comalcalco, Cunduacán, Jalpa and Paraiso, where the species is already present, providing valuable information for prevention and control of arboviruses in the state of Tabasco.

Both species reported in this entomological surveillance, are considered important vectors and also as invasive species, because they have successfully colonized many places outside of their native environment25.

Of the 4,090 identifications, Ae. aegypti was the species found in 94.7% of localities sampled and with a higher proportion (94.91%) compared to Ae. albopictus (5.09%). When both Aedes species share the same breeding sites, there is no scientific consensus about the displacement of one species with respect to the other. While studies conducted in Southeast Asia indicate that Ae. Aegypti can replace Ae. albopictus in urban areas. In the United States and Brazil, it has been observed that this species with more jungle characteristics, can reach drastically and quickly populations of Ae. Aegypti17. Since, a series of ecological principles states that two species cannot occupy the same niche, which leads to a reduction in the population of one of the species due to competition with the other25.

Conclusion

The presence and distribution of Ae. Albopictus was destermined in 9 municipalities of Tabasco, so it is recommended to strengthen the entomological surveillance of the species, in order to generate information regarding densities in immature and imago states. Because Ae. albopictus is conferred anthropophilic and zoophilic capacity as a potential vector to intervene in the transmission cycles both of anthropozoonotic diseases and exclusive occurrence of human being and with an endemic or emergent behavior26. The dispersion of Ae. albopictus in Tabasco is still in progress as it could colonize the 17 municipalities of the state. This poses new challenges in public health, in terms of the prevention and control of arboviruses and it requires us to generate knowledge in order to implement strategies considering the particularities of the species present.

Acknowledgments

We thank the State Public Health Laboratory, especially Master Isabel Cristina Cruz Zúñiga for the identification of the samples and to the members of the Entomological Research Unit of Tabasco for their support.

References

1. Hawley, W. 1988. The Biology of Aedes albopictus. Journal of American Mosquito Control Association, 4: 2-39. [ Links ]

2. Juliano SA, Lounibos LP. Ecology of invasive mosquitoes: Effects on resident species and on human health. Ecol Lett. 2005;8:558-74. http://dx.doi.org/10.1111/j.1461-0248. 2005.00755 [ Links ]

3. Benedict MQ, et al. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 2007; 7:76-85. https://doi.org/10.1089/vbz.2006.0562 [ Links ]

4. Hawley, W.A., Reiter, P., Copeland,R.S., Pumpuni, C. B., & Craig, G. B. (1987). Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science, 236: 1114-1116. https://doi.org/10.1126/science.3576225 [ Links ]

5. Fujioka KK, et al. Discovery of Aedes albopictus (Skuse) in the city of El Monte and the initial response. Proc. Papers Mosq. Vect. Control. Assoc. Calif. 2012; 80:27-29. [ Links ]

6. Zhong D, et al. Genetic Analyasis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact. PLoS One. 2013 in press. https://doi.org/10.1371/journal.pone.0068586 [ Links ]

7. Ibáñez-Bernal, S., Briseño, B., Mutebi, J.P., Argot, E., Rodríguez, G. Martínez-Campos, C., Paz, R., de la Fuente-San, R.P., Tapia-Conyer, R., Flisser, A., 1997. First récord in América of Aedes albopictus naturally infected with dengue virus during the 1995 outbreak at Reynosa in México. Med. Vet.Entomol. 11, 305-309. https://doi. org/10.1111/j.1365-2915.1997.tb00413.x [ Links ]

8. Ibáñez-Bernal, S., Martínez-Campos, C., 1994. Aedes albopictus in México. J.Am. Mosq. Control Assoc. 10, 231-232. [ Links ]

9. Rodríguez-Tovar, M.L., Ortega-Martínez, M.G., 1994. Aedes albopictus in Muzquiz City, Coahuila, México. J. Am. Mosq. Control Assoc. 10, 587. [ Links ]

10. Ponce, G., E. Flores, A., H. Badii, M., Fernández, I., & Rodríguez, M. (2004). BIONOMÍA DE Aedes albopictus (Skuse).RESPYN Revista de Salud Pública y Nutrición, 5(2). Recuperado de http://respyn.uanl.mx/index.php/ respyn/article/view/127/109Links ]

11. Orta-Pesina, H., Mercado-Hernández, R., Valdez- Rodríguez, M.A., 2001. Aedes albopictus in Allende city Nuevo León México. Am. J. Trop. Med. Hyg. 17,260-261. [ Links ]

12. Martínez, M. C., & Estrada, J. L. T. (2003). First Evidence of Aedes albopictus (Skuse) in Southern Chiapas, México. Emerging Infectious Diseases, 9(5), 606-607. http://doi.org/10.3201/eid0905.020678 [ Links ]

13. Villegas-Trejo, A., Manrique-Saide, P., Che-Mendoza, A., Cruz-Canto, W., González-Fernández, M., González- Acosta, C., Dzul-Manzanilla, F., Huerta, H., Arredondo- Jiménez, J.I., 2010. First report of Aedes albopictus and other mosquito species in Morelos México. J. Am. Mosq. Control Assoc. 26, 321-323. https://doi.org/10.2987/10-6014.1 [ Links ]

14. Salomón-Grajales, J., Lugo-Moguel, G.V, Tinal- Gordillo, V.R., Cruz-Velázquez, J., Beaty, B.J., Eisen, L., Lozano-Fuentes, S., Moore, C.G., García-Rejón, J.E., 2012. Aedes albopictus mosquitoes, Yucatán Península México. Emerg. Infect. Dis. 18,525-527, http://doi.org/10.3201/ eid1803.111626 [ Links ]

15. Pech-May, A., Moo-Llanes, D.A., Puerto-Ávila,M, V, Casas, M., et al. 2016.Population genetics and ecological niche of invasive Aedes albopictus in Mexico. Acta Tropica 157 30-41. http://dx.doi.org/10.1016/j.actatropica.2016.01.021 [ Links ]

16. Ortega-Morales, A., Bond, G., Méndez-López, R., Garza- Hernández, J,. Hernández-Triana, L.M y Casas-Martínez, M. (2018) Primer registro de mosquito invasor Aedes albopictus en Tabasco y Yucatán, México. Revista de la Asociación Americana de Control de Mosquitos: junio de 2018, vol. 34, No. 2, pp. 120-123. https://doi.org/10.2987/18-6736.117 [ Links ]

17. Estrada-Franco J. Biology, disease relation ship, and control of Ae-des albopictus. Technical Paper PAHO. 1995;42:51. [Internet] [citado 15 de Julio de 2018]. Disponible en: Disponible en: http://www.dpi.inpe.br/geocxnets/wiki/lib/ exe/fetch.php?media=wiki:estrada-franco_and_craig_1995_paho_42_1-49.pdfLinks ]

18. Rúa-Uribe, G.L, Suarez-Acosta, C.R., Rojo, R.A. 2012 Implicaciones epidemiológicas de Aedes albopictus (Skuse) en Colombia. Rev. Fac. Nac. Salud Pública 30(3):328-337. [Internet] [citado 23 de Julio de 2018]. Disponible en: Disponible en: http:// www.scielo.org.co/pdf/rfnsp/v30n3/v30n3a09.pdfLinks ]

19. Rosen lD, Shroyer R, Tesh J, Freier J, Lien JC. Transovarial trans-mission of dengue viruses by mosquitoes: Aedes albopictus and Aedes aegypti. J Am Trop Med Hyg. 1983;32:1108-19. DOI: https://doi.org/10.4269/ ajtmh.1983.32.1108 [ Links ]

20. Shroyer DA. Aedes albopictus and arboviruses: A concise review of the literature. J Am Mos Cont Assoc. 1986;2:424- 8. [ Links ]

21. Guía para la instalación y mantenimiento del insectario de Aedes aegypti (Díptera: Culicidae), [Internet]. 2015, [citado 18 de Julio de 2018]. Disponible en: Disponible en: http://www.cenaprece. salud.gob.mx/programas/interior/vectores/descargas/pdf/GuiaInstalacionMantenimientoInsectarioAedesAegypti.pdfLinks ]

22. Ibáñez-Bernal s. y C. Martínez-campos. 1994. clave para la identificación taxonómica de larvas de mosquitos comunes en áreas urbanas y suburbanas de la República Mexicana. Folia Entomol. Mex.. 92. 43. [ Links ]

23. Gomes AC, Forattini OP, Kakitani I, Marques GR, Marques CC, Azevedo MD, et al. Microhábitats de Aedes albopictus (Skuse) na regiao do Vale do Paraíba, Estado de Sao Paulo, Brasil. Rev Saúde Pública. 1992;26:108-18. [Internet]. 1992, [citado 23 de Julio de 2018]. Disponible en: Disponible en: http://www.scielo.br/pdf/rsp/v26n2/07.pdfLinks ]

24. Novak R. The Asian tiger mosquito, Aedes albopictus. Wing Beats. 1992; 3:5. [ Links ]

25. Rey J, Lounibos P. Ecología de Aedes aegypti y Aedes albopictus. Biomédica 2015; 35:177-85 doi: http://dx.doi.org/10.7705/biomedica.v35i2.2514.Links ]

26. Ponce G, Flores AE, Badii MH, Fernández I, Rodríguez ML. Bionomía de Aeds albopictus (Skuse). Rev Salud Púb Nut. 2004; 5:1-14 [Internet]. 1992, [citado 23 de Julio de 2018]. Disponible en: Disponible en: http://respyn.uanl.mx/index.php/ respyn/article/download/127/109 . [ Links ]

Received: August 07, 2018; Accepted: October 23, 2018

*Corresponding autor: Luis Miguel Rodríguez Martínez. Address: Colonia Atasta de Serra Melchor Ocampo 113 Col. Atasta de Serra. Postal Code. 86100 Villahermosa, Tabasco, México. Email: luis_rey1979@hotmail.com

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons