SciELO - Scientific Electronic Library Online

 
vol.14 issue79Assessment of a reforestation and a regeneration of the Tamaulipan Thorny Scrub at Northeastern MexicoUseful plants in the rural area of Linares municipality, Nuevo León author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias forestales

Print version ISSN 2007-1132

Rev. mex. de cienc. forestales vol.14 n.79 México Sep./Oct. 2023  Epub Oct 06, 2023

https://doi.org/10.29298/rmcf.v14i79.1365 

Scientific article

Macrofungi species from thornscrubsin Northeast Mexico

Fortunato Garza Ocañas1  * 

Jesús García Jiménez2 

Gonzalo Guevara Guerrero2 

Miroslava Quiñónez Martínez3 

María Inés Yáñez Díaz1 

1Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales. México.

2Instituto Tecnológico de Ciudad Victoria. México.

3Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas. México.


Abstract

Thornscrubs cover large areas in Northeast Mexico and few species of macrofungi have been reported. The objective of this study was to know the diversity of macrofungi associated with thornscrubs. The results showed a diversity of 218 fungal taxa, belonging to 145 genera and 62 families. 186 species are distributed in both states of Nuevo León and Tamaulipas, 23 only in Tamaulipas and nine only in Nuevo León. 34 of these species are new records for Northeast Mexico. Basidiomycetes are the most diverse with 187 species, 125 genera and 50 families, followed by Ascomycetes with 23 species, 13 genera and seven families. The Myxomycetes (formerly considered as fungi) were less abundant with eight species, seven genera and five families. As for the genera with the greatest richness, Xylaria had fourteen taxa it was followed by Amanita ten, Lactarius and Lentinus six, Ganoderma, Phellinus and Geastrum four, Boletus three, and the rest less than three. Regarding the edibility of the taxa, 175 were not edible, 18 edible and 25 toxic species were recorded. In relation to growth habit, 62 are mycorrhizal, 117 are saprotrophic, 31 are parasitic and eight are phagotrophic. The altitudinal distribution showed that 94 taxa were recorded between 100 and 500 m of altitude and 104 species grow between 500-700 m. Mycorrhizal and parasitic fungi are associated with 41 plant species.

Key words Distribution; diversity; ecology; macrofungi; thornscrubs; Northeast Mexico

Resumen

Los matorrales ocupan grandes extensiones en el Noreste de México, pero en ellos pocas especies de macrohongos han sido citadas. El objetivo de este estudio fue conocer su diversidad asociada a matorrales. Los resultados demostraron una diversidad de 218 taxa de hongos pertenecientes a 145 géneros y 62 familias. En los estados de Nuevo León y Tamaulipas se distribuyeron 186 especies, 23 solo en Tamaulipas y nueve únicamente en Nuevo León. De ellos, 34 son nuevos registros para el Noreste de México. Los basidiomicetos son los más diversos con 187 especies, 125 géneros y 50 familias, le siguen los ascomicetos con 23 especies, 13 géneros y siete familias. Los mixomicetos (antes considerados hongos) son menos abundantes, con ocho especies, siete géneros y cinco familias. En cuanto a los géneros con mayor riqueza: Xylaria está representado por 14 taxones, Amanita con 10, Lactarius y Lentinus con seis, Ganoderma, Phellinus y Geastrum por cuatro, Boletus con tres y el resto menos de tres. Con respecto a la comestibilidad de los taxones, se registraron 175 no comestibles, 18 comestibles y 25 tóxicas. En relación al hábito de crecimiento, 62 son micorrícicos, 117 saprobios, 31 parásitos y ocho fagotróficos. La distribución altitudinal de 94 taxa se ubicó entre 100 y 500 m, 124 especies en un intervalo de 500 a 700 m. Los hongos micorrícicos y parásitos se asociaron a 41 especies de plantas.

Palabras clave Distribución; diversidad; ecología; macrohongos; matorrales; Noreste de México

Introduction

The Tamaulipas biogeographic province in the area of the Gulf of Mexico coast is distributed in around 200 000 km2, from Northern Mexico to southern Texas, in the United States of America (Conabio, 2021). It is made up of scrub of several types (González, 2003). The thorny scrub has plant species that are 1-4 m tall and grow at altitudes of 100-650 m. The submontane scrub is home to sub-armless trees 4-6 m tall, located in the lower parts of the Sierra Madre Oriental in an east-west direction, between 650 and 700 masl. Both types of scrub include multipurpose plants that are used in rural communities (Alanís, 2006; Estrada et al., 2014). People use them as round wood for the construction of houses and fences, as well as for the manufacture of domestic furniture, agricultural tools, such as charcoal or firewood, and they consume the fruits of some wild species (Alanís, 2006).

The clearing of scrubs for the introduction of grass and livestock for agricultural purposes or for the production of orange trees is a common practice that causes a dramatic loss of biodiversity (Pando et al., 2014), which disappears without being scientifically known. Such is the case of many macro and micro fungi that recycle organic matter.

Some studies in which species of macrofungi have been recorded in Northern Mexican scrub, for example: Favolus brasiliensis (Fr.) Fr., Polyporus alveolaris (DC.) Bondartsev & Singer, Montagnea arenaria (DC.) Zeller, Podaxis pistillaris (L.) Fr., Phellorinia herculeana (Pers.) Kreisel and Tulostoma Pers. spp., are those of Castillo and Guzmán (1970), Esqueda-Valle et al. (1995) and Esqueda et al. (2012). Up to day, there are no reports of macromycetes associated with sensu lato scrub in Northeast Mexico. The objective of this study was to generate information about the species of macromycetes that grow in some scrublands of Northeast Mexico.

Materials and methods

The mushrooms were collected during the last 35 years in more than 100 locations in the states of Nuevo León and Tamaulipas. The classic protocols for the study of macrofungi were followed, which include recording their macroscopic characteristics in situ in fresh specimens (Largent et al., 1973; Villarreal and Gómez, 1995; Lodge et al., 2004; Bessette et al., 2016). Likewise, the characteristics of the collection sites in the field were noted: altitude, condition of the vegetation, tree, shrub and herbaceous species. Photographs (D3300 Nikon® camera, 40mm macro lens) of the specimens were taken both at a distance of 1 m, and with macrophotography in order to have the maximum details of the sporomes.

For the microscopic visualization of the different structures that characterize the species, fine cuts were manually made with a knife. These were mounted in KOH reagent (5 %) and Melzer in order to observe the contrast of the structures more clearly (Largent et al., 1977).

For color terminology, the Methuen Handbook of Color (Kornerup and Wanscher, 1978) was used. At least 30 microscopic structures (basidiospores, basidia and pileipellis) were measured with an Axiostar Carl Zeiss® optical microscope (Quiñónez et al., 2008). The Q ratio, mean length (L) and mean width (W) were obtained for basidiospores as described by Frank et al. (2020).

The identification of the possible hosts with which the saprobe, parasitic and mycorrhizal species were observed was carried out in the CFNL herbarium of the Graduate School of Forest Sciences of the Universidad Autónoma de Nuevo León in Linares, Nuevo León. The studied material was deposited in the mycological collections of the José Castillo Tovar (ITCV) of the Technological Institute of Ciudad Victoria and the CFNL herbaria. Species were ordered according to Kirk et al. (2008); for the classification of the species the Index Fungorum (2023) was used.

Results

In the present investigation, only a part of the diversity of macromycete species that have been determined associated with the scrublands of Northeast Mexico is documented (Figure 1). The records corresponded to 210 species of Ascomycetes and Basidiomycetes, represented in 138 genera of 57 families, in addition to eight species of Myxomycetes from seven genera belonging to five families in the states of Nuevo León and Tamaulipas. In both states, 186 were distributed, 23 only in Tamaulipas and nine only in Nuevo León. 34 species of them are new records for Northeast Mexico (Table 1).

Frequent species: A = Ganoderma lobatum (Cooke) G. F. Atk.; B = Trametes versicolor (L.) Lloyd; C = Lysurus periphragmoides (Klotzsch ex Hook.) Dring; D = Heliocybe sulcata (Berk.) Redhead & Ginns. Rare species: E = Agaricus deserticola G. Moreno, Esqueda & Lizárraga; F = Pluteus petasatus (Fr.) Gillet; G = Phellodon fibulatus K. A. Harrison.

Figura 1 Some of the macrofungi species found in the shrublands of Northeast Mexico. 

Table 1 Taxonomy, growth habit, altitude, edibility and geographical distribution of the studied species. 

Taxonomic groups Species Habit/ Altitude Edibility Distribution by state
EUMYCOTA
ASCOMYCOTINA
Sordariomycetes
Hypocreales
Cordycipitaceae
Cordyceps militaris (L.) Fr. P NC NL*
Xylariales
Graphostromataceae
Biscogniauxia fuscella (Rehm) F. San Martín & J. D. Rogers P/A2 NC NL/TAM
Hypoxylaceae
Daldinia concentrica (Bolton) Ces. & De Not. P NC NL/TAM
Xylariaceae
Hypocreodendron sanguineum Henn. S1 NC NL/TAM
Kretzschmaria pavimentosa (Ces.) P. M. D. Martin P NC TAM
Poronia oedipus (Mont.) Mont. S1 NC NL*/TAM
Xylaria arbuscula Sacc. S3/A2 NC TAM
X. corniformis (Fr.) Fr. S3/A2 NC TAM
X. cubensis (Mont.) Fr. S3 NC TAM
X. curta Fr. S3 NC TAM
X. enterogena Mont. S3 NC TAM
X. enteroleuca (J. H. Mill.) P. M. D. Martin S3 NC TAM
X. feejeensis (Berk.) Fr. S3 NC NL/TAM
X. multiplex (Kunze) Fr. S3 NC NL/TAM
X. polymorpha (Pers.) Grev. S3 NC NL/TAM
X. protea Fr. S3 NC NL/TAM
Xylosphaera ianthinovelutina (Mont.) Dennis S3 NC TAM
Pezizomycetes
Pezizales
Pezizaceae
Hydnobolites cerebriformis Tul. & C. Tul. M/A2 NC NL/TAM
Pachyphlodes citrina (Berk. & Broome) Doweld M/A2 NC NL/TAM
P. virescens (Gilkey) Doweld M/A2 NC NL/TAM
Sarcoscyphaceae
Phillipsia domingensis (Berk.) Berk. ex Denison S3/A2 NC NL/TAM
Sarcoscypha coccinea (Jacq.) Lambotte S3/A2 NC NL/TAM
Tuberaceae
Tuber nitidum Vittad. M/A2 NC NL/TAM
BASIDIOMYCOTINA
Agaricomycetes
Agaricales
Cyathus olla (Batsch) Pers. S3/A2 NC NL/TAM
C. stercoreus (Schwein.) De Toni S2 NC NL/TAM
C. striatus Willd. S3/A2 NC NL/TAM
Agaricaceae
Agaricus aridicola Geml, Geiser & Royse ex Mateos, J. Morales, J. A. Muñoz, Rey & C. Tovar S1 NC NL*/TAM
A. campestris L. S1 C NL/TAM
A. xanthodermus Genev. S1 NC NL/TAM
A. placomyces Peck S1/A2 NC NL*/TAM
Battarrea phalloides (Dicks.) Pers. S1 NC NL
Battarreoides diguetii (Pat. & Har.) R. Heim & T. Herrera S1 NC NL
Chlorophyllum molybdites (G. Mey.) Massee S1 NC NL/NL
Coprinus comatus (O. F. Müll.) Pers. S1 NC NL/TAM
Disciseda bovista (Klotzsch) Henn. S1/A2 NC NL/TAM
Lepiota besseyi H. V. Sm. & N. S. Weber S1 NC TAM
L. cristata (Bolton) P. Kumm. S1/A2 NC NL/TAM
L. erythrosticta (Berk. & Broome) Sacc. S1 NC NL/TAM
Leucoagaricus rubrotinctus (Peck) Singer S1 NC NL*/TAM
Leucocoprinus birnbaumii (Corda) Singer S3 NC NL/TAM
Leucocoprinus cepistipes var. pseudofarinosus Raithelh. S1 T NL/TAM
L. ianthinus (Sacc.) P. Mohr S1 T NL/TAM
L. sulphurellus Pegler S1 T TAM
Montagnea arenaria (DC.) Zeller S1 NC NL/TAM
Phellorinia herculeana (Pers.) Kreisel S1 NC NL
Podaxis pistillaris (L.) Fr. S1 NC NL/TAM
Tulostoma albicans V. S. White S1 NC NL
Amanitaceae
Amanita caesarea (Scop.) Pers. M/A2 NC NL/TAM
A. flavorubens (Berk. & Mont.) Sacc. M/A2 NC NL/TAM
A. fulva Fr. M/A2 T NL/TAM
A. jacksonii Pomerl. M/A2 C NL*/TAM
A. pantherina (DC.) Krombh. M/A2 NC NL/TAM
A. rubescens Pers. M/A2 T NL/TAM
A. vaginata (Bull.) Lam. M/A2 NC NL/TAM
A. amerivirosa Tulloss, L. V. Kudzma & M. Tulloss M/A2 NC NL/TAM
Limacella alachuana (Murrill) Pegler M NC NL*/TAM
Zhuliangomyces illinitus (Fr.) Redhead M/A2 NC NL/TAM
Bolbitiaceae
Bolbitius mexicanus (Murrill) Murrill S1 NC TAM
Conocybe apala (Fr.) Arnolds S1 NC NL*/TAM
C. deliquescens Hauskn. & Krisai S1 NC NL/TAM
Cortinariaceae
Cortinarius iodes Berk. & M. A. Curtis M/A2 NC NL/TAM
Cyphellaceae
Chondrostereum purpureum (Pers.) Pouzar S3/A2 NC NL/TAM
Entolomataceae
Clitopilus azalearum (Murrill) Noordel. & Co-David S1 NC TAM
Entoloma permutatum E. Horak S1 NC TAM
E. pseudopapillatum (Pegler) Courtec. & Fiard S1 NC TAM
Galeropsidaceae
Panaeolus antillarum (Fr.) Dennis S2 NC NL/TAM
P. cyanescens Sacc. S2 NC NL*/TAM
Panaeolina foenisecii (Pers.) Maire S2 NC NL*
Hygrophoraceae
Hygrocybe erinacea (Pat.) Singer S1/A2 T NL/TAM
Hygrophorus buccinulus (Speg.) Dennis S1 NC NL/TAM
Lycoperdaceae
Calvatia cyathiformis (Bosc) Morgan S1 C NL/TAM
Lyophyllaceae
Calocybe cyanea Singer ex Redhead & Singer S1/A2 T NL*/TAM
Marasmiaceae
Crinipellis eggersii Pat. S3 NC NL*/TAM
C. septotricha Singer S3 NC NL/TAM
Tetrapyrgos nigripes (Fr.) E. Horak S3 NC NL*/TAM
Mycenaceae
Mycena pura (Pers.) P. Kumm. S1/A2 NC NL/TAM
Panellus pusillus (Pers. ex Lév.) Burds. & O. K. Mill. S3/A2 T NL*/TAM
Trogia cantharelloides (Mont.) Pat. S1/A2 T TAM
T. icterina (Singer) Corner S1/A2 T NL*
Omphalotaceae
Clitocybula familia (Peck) Singer S1 T NL*/TAM
Collybiopsis confluens (Pers.) R. H. Petersen S1/A2 T NL/TAM
Gymnopus dryophilus (Bull.) Murrill S1/A2 NC NL/TAM
Omphalotus subilludens (Murrill) H. E. Bigelow S3/A2 T NL*/TAM
Paxillaceae
Neopaxillus dominicanus Angelini & Vizzini S1 NC NL
Physalacriaceae
Dactylosporina steffenii (Rick) Dörfelt S2 NC NL/TAM
Desarmillaria tabescens (Scop.) R. A. Koch & Aime P/A2 T NL/TAM
Hymenopellis radicata (Relhan) R. H. Petersen S1 T NL/TAM
Xerula pudens (Pers.) Singer S3/A2 T NL*/TAM
Pleurotaceae
Hohenbuehelia petaloides (Bull.) Schulzer S1/A2 T NL/TAM
H. atrocaerulea (Fr.) Singer S1/A2 T TAM
Lepista nuda (Bull.) Cooke S1/A2 C NL*/TAM
Pleurotus djamor (Rumph. ex Fr.) Boedijn S3 C NL/TAM
Resupinatus applicatus (Batsch) Gray S3 NC NL*/TAM
Pluteaceae
Volvariella hypopithys (Fr.) Shaffer S3 C NL*/TAM
V. villosovolva (Lloyd) Singer S3 NC NL*/TAM
Psathyrellaceae
Parasola plicatilis (Curtis) Redhead, Vilgalys & Hopple S1 NC NL/TAM
Candolleomyces candolleanus (Fr.) D. Wächt. & A. Melzer S1 NC NL/TAM
Schizophyllaceae
Schizophyllum commune Fr. S3/A2 C NL/TAM
S. umbrinum Berk. S3/A2 NC NL*
Strophariaceae
Deconica coprophila (Bull.) P. Karst. S2 NC NL/TAM
Tricholomataceae
Leucopaxillus albissimus (Peck) Singer M/A2 T NL*/TAM
L. gracillimus Singer & A. H. Sm. M T NL*/TAM
Auriculariales
Auriculariaceae
Auricularia mesenterica (Dicks.) Pers. S3/A2 C NL/TAM
A. nigricans (Sw.) Birkebak, Looney & Sánchez-García S3/A2 C NL/TAM
Elmerina berkeleyi (Sacc. & Cub.) Petch S3/A2 NC NL/TAM
Boletales
Boletaceae
Aureoboletus auriporus (Peck) Pouzar M/A2 NC NL/TAM
Austroboletus gracilis (Peck) Wolfe M/A2 NC NL/TAM
A. neotropicalis Singer, J. García & L. D. Gómez M/A2 NC NL/TAM
Boletus luridellus (Murrill) Murrill M/A2 NC TAM
B. miniato-olivaceus Frost M/A2 NC NL/TAM
B. subvelutipes Peck M/A2 NC NL/TAM
Boletellus coccineus (Sacc.) Singer M/A2 C NL/TAM
Caloboletus inedulis (Murrill) Vizzini M/A2 NC NL/TAM
Cyanoboletus pulverulentus (Opat.) Gelardi, Vizzini & Simonini M/A2 NC NL/TAM
Exsudoporus floridanus (Singer) Vizzini, Simonini & Gelardi M/A2 NC NL/TAM
Hortiboletus rubellus (Krombh.) Simonini, Vizzini & Gelardi M/A2 C NL/TAM
Phylloboletellus chloephorus Singer M/A2 NC NL/TAM
Porphyrellus cyaneotinctus (A. H. Sm. & Thiers) Singer M/A2 NC NL/TAM
Suillellus luridus (Schaeff.) Murrill M/A2 NC NL/TAM
Strobilomyces confusus Singer M/A2 NC NL/TAM
S. strobilaceus (Scop.) Berk. M/A2 NC NL/TAM
Tylopilus ferrugineus (Kuntze) Singer M/A2 NC NL/TAM
T. griseocarneus Wolfe & Halling M/A2 NC TAM
T. plumbeoviolaceus (Snell & E. A. Dick) Snell & E. A. Dick M/A2 NC NL/TAM
Xerocomellus intermedius (A. H. Sm. & Thiers) Svetash., Simonini & Vizzini M/A2 NC NL*/TAM
Xerocomus truncatus Singer, Snell & E. A. Dick M/A2 NC NL/TAM
Boletinellaceae
Boletinellus rompelii (Pat. & Rick) Watling M NC NL/TAM
Phlebopus portentosus (Berk. & Broome) Boedijn M NC NL*/TAM
Diplocystidiaceae
Astraeus hygrometricus (Pers.) Morgan M/A2 NC NL/TAM
Gyroporaceae
Gyroporus castaneus (Bull.) Quél. M/A2 NC NL/TAM
G. subalbellus Murrill M/A2 NC NL*/TAM
Sclerodermataceae
Pisolithus tinctorius (Mont.) E. Fisch. M/A2 NC NL/TAM
Scleroderma areolatum Ehrenb. M/A2 NC NL/TAM
S. cepa Pers. M/A2 NC NL/TAM
S. verrucosum (Bull.) Pers. M/A2 NC NL/TAM
Cantharellales
Hydnaceae
Cantharellus cibarius Fr. M/A2 C NL/TAM
C. lateritius (Berk.) Singer M/A2 C NL/TAM
Craterellus cornucopioides (L.) Pers. M/A2 C NL/TAM
Hydnum repandum L. M/A2 C NL/TAM
Geastrales
Geastraceae
Geastrum minimum Schwein. S1/A2 NC NL/TAM
G. quadrifidum Pers. S1/A2 NC NL/TAM
G. saccatum Fr. S1/A2 NC NL/TAM
G. triplex Jungh. S1/A2 NC NL/TAM
Myriostoma coliforme (Dicks.) Corda S1/A2 NC NL
Sphaerobolus stellatus Tode S2 NC NL/TAM
Gloeophyllales
Gloeophyllaceae
Gloeophyllum striatum (Fr.) Murrill S3/A2 NC NL/TAM
Hymenochaetales
Hymenochaetaceae
Coltricia perennis (L.) Murrill M T NL/TAM
Fuscoporia licnoides (Mont.) Oliveira-Filho & Gibertoni P/A2 NC TAM
Fomitiporia robusta (P. Karst.) Fiasson & Niemelä P/A2 NC NL/TAM
Inonotus calcitratus (Berk. & M. A. Curtis) Gomes-Silva & Gibertoni P NC NL/TAM
I. hispidus (Bull.) P. Karst. P/A2 NC NL/TAM
Phellinus badius (Cooke) G. Cunn. P NC NL/TAM
P. fastuosus (Lév.) S. Ahmad P NC NL/TAM
P. gilvus (Schwein.) Pat. P NC NL/TAM
P. robiniae (Murrill) A. Ames P/A2 NC NL/TAM
Phylloporia fruticum (Berk. & M. A. Curtis) Ryvarden P/A2 NC NL/TAM
P. spathulata (Hook.) Ryvarden M NC TAM
Tropicoporus linteus (Berk. & M. A. Curtis) L. W. Zhou & Y. C. Dai P NC NL/TAM
Nigrofomitaceae
Nigrofomes melanoporus (Mont.) Murrill P/A2 NC NL/TAM
Phallales
Phallaceae
Clathrus crispus Turpin S1 NC NL/TAM
Lysurus periphragmoides (Klotzsch ex Hook.) Dring S1 NC NL/TAM
Phallus indusiatus Vent. S1 NC TAM
P. ravenelii Berk. & M. A. Curtis S1/A2 NC NL/TAM
Polyporales
Cerrenaceae
Cerrena hydnoides (Sw.) Zmitr. S3/A2 NC NL/TAM
Fomitopsidaceae
Daedalea quercina (L.) Pers. P/A2 NC NL/TAM
Phaeodaedalea incerta (Curr.) Ţura, Zmitr., Wasser & Spirin P/A2 NC TAM
Rhodofomes roseus (Alb. & Schwein.) Kotl. & Pouzar P/A2 NC NL/TAM
Ganodermataceae
Cristataspora coffeata (Berk.) Robledo, Costa-Rezende & de Madrignac Bonzi S1 NC NL/TAM
Incrustoporiaceae
Tyromyces lacteus (Fr.) Murrill S3/A2 NC NL/TAM
Irpicaceae
Byssomerulius incarnatus (Schwein.) Gilb. S3/A2 NC NL/TAM
Meripilaceae
Rigidoporus ulmarius (Sowerby) Imazeki P/A2 NC NL/TAM
Panaceae
Cymatoderma caperatum (Berk. & Mont.) D. A. Reid S3/A2 NC NL*/TAM
Panus conchatus (Bull.) Fr. S3/A2 T NL/TAM
Phanerochaetaceae
Phlebiopsis crassa (Lév.) Floudas & Hibbett P NC NL/TAM
Podoscyphaceae
Abortiporus biennis (Bull.) Singer P NC NL*/TAM
Polyporaceae
Diacanthodes novoguineensis (Henn.) O. Fidalgo P NC NL7TAM
Daedaleopsis confragosa (Bolton) J. Schröt. P/A2 NC NL/TAM
Fabisporus sanguineus (L.) Zmitr. S3 NC NL/TAM
Favolus tenuiculus P. Beauv. S3/A2 NC NL*/TAM
Funalia floccosa (Jungh.) Zmitr. & Malysheva P/A2 NC NL/TAM
Ganoderma applanatum (Pers.) Pat. P/A2 NC NL/TAM
G. curtisii (Berk.) Murrill P NC NL/TAM
G. lobatum (Cooke) G. F. Atk. P NC NL/TAM
G. resinaceum Boud. P NC NL*/TAM
Hexagonia cucullata (Mont.) Murrill S3/A2 T NL/TAM
Lentinus arcularius (Batsch) Zmitr. S3 NC NL/TAM
L. badius (Berk.) Berk. S3 T NL/TAM
L. crinitus (L.) Fr. S3/A2 T NL/TAM
L. levis (Berk. & M. A. Curtis) Murrill S3/A2 C NL/TAM
L. tigrinus (Bull.) Fr. S3/A2 NC NL/TAM
L. tricholoma Berk. & Cooke S3 NC NL/TAM
Trametes elegans (Spreng.) Fr. P/A2 NC NL/TAM
T. maxima (Mont.) A. David & Rajchenb. P NC NL/TAM
T. variegata (Berk.) Zmitr., Wasser & Ezhov S3 NC NL/TAM
T. villosa (Sw.) Kreisel S3 NC NL/TAM
Truncospora livida (Kalchbr.) Zmitr. P/A2 NC NL*/TAM
Russulales
Albatrellaceae
Albatrellus pilosus (Petch) Ryvarden M/A2 NC NL*/TAM
Peniophoraceae
Peniophora albobadia (Schwein.) Boidin P NC NL/TAM
Russulaceae
Lactarius subpalustris Hesler & A. H. Sm. M/A2 NC NL/TAM
L. fuliginellus A. H. Sm. & Hesler M/A2 NC TAM
L. indigo (Schwein.) Fr. M/A2 C NL/TAM
L. romagnesii Bon M/A2 NC NL/TAM
L. strigosipes Montoya & Bandala M/A2 NC NL/TAM
L. volemus (Fr.) Fr. M/A2 C NL/TAM
Russula cyanoxantha (Schaeff.) Fr. M/A2 C NL/TAM
Stereaceae
Stereum ostrea (Blume & T. Nees) Fr. S3/A2 NC NL/TAM
Sebacinales
Sebacinaceae
Helvellosebacina concrescens (Schwein.) Oberw., Garnica & K. Riess S3 NC TAM
Sebacina schweinitzii (Peck) Oberw. S3 NC NL/TAM
Thelephorales
Thelephoraceae
Thelephora palmata (Scop.) Fr. M NC NL/TAM
Dacrymycetes
Dacrymycetales
Dacrymycetaceae
Dacryopinax spathularia (Schwein.) G. W. Martin S3/A2 NC NL/TAM
Tremellomycetes
Tremellales
Tremellaceae
Tremella lutescens Lloyd S3/A2 NC NL/TAM
Protozoa
Myxogastrea
Cribrariida
Cribrariidae
Cribraria violacea Rex F/A2 NC NL/TAM
Liceida
Reticulariidae
Lycogala epidendrum (J. C. Buxb. ex L.) Fr. F/A2 NC NL/TAM
Trichiida
Trichidae
Arcyria denudata (L.) Wettst. F NC NL/TAM
Hemitrichia calyculata (Speg.) M. L. Farr F/A2 NC NL/TAM
Physarida
Physarridae
Fuligo intermedia T. Macbr. F/A2 NC NL/TAM
F. septica (L.) F. H. Wigg. F NC NL/TAM
Physarum pusillum (Berk. & M. A. Curtis) G. Lister F NC NL/TAM
Stemonitales
Stemonitaceae
Stemonitis fusca Roth F/A2 NC NL/TAM

S1 = Saprobe in soil; S2 = Fimicolous; S3 = Saprobe in wood; M = Mycorrhizal; P = Parasite; F = Phagotrophic; T = Toxic; C = Edible; NC = Not Edible; NL = Nuevo León; TAM = Tamaulipas; NL/TAM = Both States; A2 = Species that grow at altitudes of 500-700 m, the rest of the species grow at altitudes of 100-500 m. * New reports for the region.

Basidiomycetes were the most diverse, with 187 species from 125 genera and 50 families. The Ascomycetes followed with 23 species, 13 genera and seven families; and the Myxomycetes (previously considered fungi) are represented by five families, seven genera and eight species. The Boletaceae, Agaricaceae, Polyporaceae, and Hymenochaetaceae families presented 14, 13, 10, and eight genera, respectively; and the rest had less than ten. The families with the greatest richness were: Agaricaceae 24, Boletaceae 21, Polyporaceae 21, Xylariaceae 14, Hymenochaetaceae 12, Amanitaceae ten, the rest with less than ten. Of the genera, Xylaria Hill ex Schrank had 14 taxa, Amanita Dill. ex Boehm. ten, Lactarius Pers. and Lentinus Fr. six, Ganoderma P. Karst., Phellinus Quél. and Geastrum Pers. four, Boletus Tourn. three, and the rest less than three.

Habit, edibility, and geographical and altitudinal distribution of species

A total of 62 mycorrhizal species (28.44 %), 117 saprobes (53.66 %), 31 parasites (14.22 %) and eight fimícolas (3.66 %) were recorded. Likewise, 175 non-edible species (80.27 %), 18 edible (8.25 %) and 25 toxic (11.46 %) are recognized.

On the other hand, regarding its distribution, it was observed that 107 taxa (49.08 %) are common in the Northeast states, 71 species (32.56 %) were located only in Tamaulipas and 43 (19.72 %) only in Nuevo León. In addition, regarding its altitudinal distribution, 94 species (43.11 %) grow in intervals of 100 to 500 m and 124 (56.88 %) between 500 and 700 masl.

Main probable hosts of fungi

Forty-one probable hosts for the fungal species were identified, 33 at altitudes of 100-500 m, 18 at 500-700 m ranges and ten in the entire altitudinal spectrum, that is, from 100-700 m.

The main host plant species of parasitic fungi are: Vachellia farnesiana (L.) Wight & Arn., Bumelia celastrina Kunth, Cordia boissieri A. DC., Ebenopsis ebano (Berland.) Barneby & J. W. Grimes, Ehretia anacua (Terán & Berland.) I. M. Johnst., Cylindropuntia leptocaulis (DC.) F. M. Knuth and Parkinsonia aculeata L.

Regarding mycorrhizal fungi, it is probable that some species are associated with Quercus virginiana Mill., Q. canbyi Trel. or with Carya illinoinensis (Wangenh.) K. Koch.

Discussion

In Mexico, there are few studies on thorny scrub macrofungus species that have been published. This study is the first to attempt to show the great diversity of macromycete species that inhabit the scrublands of Northern Mexico. One of them is carried out in the Northwestern zone of the country in the states of Sonora and Chihuahua, where some species of gasteroid macromycetes (macromycetes with fruiting bodies with intermediate forms from epigeous to hypogeous) were recorded, e. g. that grow associated with native vegetation (Esqueda et al., 2006, 2012; Moreno et al., 2007, 2010).

In the present study, 218 species of macrofungus associated with the scrublands of Northeast Mexico were obtained for the first time. Of these, 34 species are new records for Northeast Mexico. Some of the taxa agree with those cited from temperate forests at the foot of the mountain by Garza et al. (2019). Likewise, some of the species studied here were indicated by various authors for their edibility or growth habit (Castillo and Guzmán, 1970; García et al., 1986; García, 1993; Garza-Ocañas, 1993).

In regard to the medicinal potential of some of the species studied, there is a coincidence with those referred to by González et al. (2009) (Ganoderma spp.). Hortiboletus rubellus (Krombh.) Simonini, Vizzini & Gelardi, Pisolithus tinctorius (Mont.) E. Fisch. and Scleroderma cepa Pers. are species referred to here that have forestry potential to inoculate oaks in nurseries to plant them in urban areas, since they quickly form abundant mycorrhizae; this agrees with what was described by Garza et al. (2022) for Boletus luridellus (Murrill) Murrill. This study considers some plants that might form ectomycorrhizae with fungal species, but there are no previous records of such associations. Therefore, it is necessary to carry out the synthesis of mycorrhizae under controlled conditions to verify it, as part of another more precise investigation in this regard. Among some fungi that are suspected to form mycorrhizae with plant species such as Cordia boissieri is Phlebopus brassiliensis Singer.

From the diversity of plant species with which parasitic fungal species or possible mycorrhizal fungi are associated, it was decided to include only the main ones. It is worth mentioning that the diversity of macromycetes is high in this region and it is intended to be published in several scientific articles. The foregoing is the large extension occupied by the scrubs, the few mycologists in the region and the uncertainty of the occurrence of rain in the region due to climate change.

Other studies on the diversity of macrofungus species from different regions and types of vegetation in the country highlight their ecological and functional importance, as well as their edibility, medicinal properties, or biotechnological potential (Quiñónez et al., 2008; Pérez-López et al., 2015).

The change in land use leads to disturbances and fragmentation of the scrub habitat and this is referred to as one of the main problems facing the diversity of macrofungus in Northeast Mexico (Alanís, 2006; Pando et al., 2014). Esqueda-Valle et al. (1995) and Esqueda et al. (2006, 2012) refer to some species of gasteroid fungi from thorny scrub in northwestern Mexico and some of the genera that stand out -Battarrea Pers., Cyathus Haller, Chlorophyllum Massee, Disciseda Czern., Montagnea Fr., Podaxis Desv., Phellorinia Berk., Tulostoma Pers.- coincide with those of the present study. Some of the gasteroid species reported by Moreno et al. (2010) and Esqueda et al. (2012) also grow in arid areas where there are scrublands in Northeast Mexico.

Conclusions

The results obtained demonstrated that there is a great diversity of macrofungi in the sensu lato scrublands of Northeast Mexico, however, although there are many more species that have been studied, only a few are listed here. Likewise, there are many more species to be studied that are associated with this ecosystem, which is why even more research is required and that in the future the areas of post-agriculture and post-livestock regeneration are included to generate more information about the pioneer species in this type of vegetation.

Acknowledgements

The authors make clear their gratitude to the authorities of their respective institutions for the support provided for the field and laboratory work for the processing of information.

REFERENCES

Alanís, G. J. 2006. Los matorrales y pastizales, su valor como recurso natural. In: Martínez-Muñoz, A. (Edit.). Tratado sobre el medio ambiente y los recursos naturales de Nuevo León. Universidad Autónoma de Nuevo León y Consejo Estatal de Flora y Fauna de Nuevo León. Monterrey, NL, México. pp. 102-123. [ Links ]

Bessette, A. E., W. C. Roody and A. R. Bessette. 2016. Boletes of Eastern North America. Syracuse University Press. New York, NY, United States of America. 471 p. [ Links ]

Castillo, J. y G. Guzmán. 1970. Estudio sobre los Polyporaceos de Nuevo León, II. Observaciones sobre las especies conocidas y discusiones acerca de su distribución en México. Boletín de la Sociedad Mexicana de Micología 31:1-47. Doi: 10.17129/botsci.1105. [ Links ]

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio). 2021. Matorrales. Biodiversidad Mexicana. https://www.biodiversidad.gob.mx/ecosistemas/Matorral . (16 de marzo de 2023). [ Links ]

Esqueda, M., A. Gutiérrez, M. L. Coronado, M. Lizárraga, T. Raymundo y R. Valenzuela. 2012. Distribución de algunos hongos gasteroides (Agaricomycetes) en la planicie central del Desierto Sonorense. Revista Mexicana de Micología 36:1-8. https://www.redalyc.org/articulo.oa?id=88326197003 . (16 de marzo de 2023) [ Links ]

Esqueda, M. , M. Coronado, A. Sánchez, E. Pérez-Silva and T. Herrera. 2006. Macromycetes of Pinacate and Great Altar Desert Biosphere Reserve, Sonora, Mexico. Mycotaxon 95:81-90. https://www.researchgate.net/publication/290264608_Macromycetes_of_Pinacate_and_Great_Altar_Desert_biosphere_reserve_Sonora_Mexico . (16 de marzo de 2023). [ Links ]

Esqueda-Valle, M., E. Pérez-Silva, R. E. Villegas y V. Araujo. 1995. Macromicetos de zonas urbanas, II. Hermosillo, Sonora, México. Revista Mexicana de Micología 11:123-132. Doi: 10.33885/sf.1995.3.833. [ Links ]

Estrada C., E., J. Á. Villarreal Q. y M. Pando M. 2014. Diversidad de plantas y sus principales usos. In: López L., Á. y M. Pando M. (Coords). Región citrícola de Nuevo León, su complejidad territorial en el marco global. Instituto de Geografía de la Universidad Nacional Autónoma de México y Facultad de Ciencias Forestales de la Universidad Autónoma de Nuevo León. Coyoacán, D. F., México. pp. 77-89. [ Links ]

Frank, J. L., N. Siegel, C. F. Schwarz, B. Araki and E. C. Vellinga. 2020. Xerocomellus (Boletaceae) in western North America. Fungal Systematic and Evolution 6(1):265-288. Doi: 10.3114/fuse.2020.06.13. [ Links ]

García, J., G. Gaona, J. Castillo y G. Guzmán. 1986. Nuevos registros de Boletaceos en México. Revista Mexicana de Micología 2:343-366. Doi: 10.33885/sf.1986.3.675. [ Links ]

García, J. 1993. Una lista preliminar de los hongos del suborden Boletineae (Basidiomycetes, Agaricales) en el noreste de México. Facultad de Ciencias Forestales de la Universidad Autónoma de Nuevo León. Linares, NL, México. 131 p. [ Links ]

Garza O., F., M. Quiñónez M., L. Garza O., A. Carrillo P., … and M. García M. 2019. Some edible, toxic and medicinal mushrooms from temperate forests in the north of Mexico. In: Sridhar, K. R. and S. K. Deshmukh (Edits.). Advances in Macrofungi. Diversity, ecology, and biotechnology. CRC Press Taylor & Francis Group. Boca Raton, FL, United States of America. pp. 144-198. [ Links ]

Garza O., F. , M. Quiñónez M., G. Guevara G., A. Carrillo-Parra, J. I. de la Fuente and J. García J. 2022. Growth responses of Quercus fusiformis (Fagaceae) to ectomycorrhizal inoculation with Boletus luridellus. Österreichische Zeitschrift für Pilzkunde 29:193-202. https://www.myk.univie.ac.at/wp-content/uploads/2022/04/OZP29_Fortunato_Boletus_luridellus.pdf . (16 de marzo de 2023). [ Links ]

Garza-Ocañas, F. 1993. Producción de compuestos antibióticos por dos especies de hongos ectomicorrícicos. Facultad de Ciencias Forestales de la Universidad Autónoma de Nuevo León. Linares, NL, México. 146 p. [ Links ]

González B., P., L. Garza O., M. C. Salinas C., L. Vera C., … y Ó. Torres A. 2009. Actividad antioxidante, antimicrobiana y citotoxicidad de dos especies mexicanas de Suillus spp. Ciencia UANL 12(1):62-70. https://www.redalyc.org/pdf/402/40212110.pdf . (16 de marzo de 2023). [ Links ]

González M., F. 2003. Las comunidades vegetales de México. Propuesta para la unificación de la clasificación y nomenclatura de la vegetación de México. Instituto Nacional de Ecología. Tlalpan, D. F., México. 77 p. [ Links ]

Index fungorum. 2023. Index Fungorum. The Royal Botanic Gardens Kew and Chinese Academy of Science. https://www.indexfungorum.org/names/names.asp . (16 de marzo de 2023). [ Links ]

Kirk, P. M., P. F. Canon, D. W. Minter and J. A. Stalpers (Edits.). 2008. Ainsworth and Bisby’s Dictionary of the Fungi. CAB International. Wallingford, OX, United Kingdom. 711 p. [ Links ]

Kornerup, A. and J. H. Wanscher. 1978. Methuen Handbook of Colour. Eyre Methuen. London, LND, United Kingdom. 252 p. [ Links ]

Largent, D. L. 1973. How to identify mushrooms to genus I: Macroscopic Features. Mad River Press. Eureka, CA, United States of America. 166 p. [ Links ]

Largent, D. L., D. Johnson and R. Watling. 1977. How to identify mushrooms to genus III: Microscopic Features. Mad River Press. Eureka, CA, United States of America. 148 p. [ Links ]

Lodge, D. J., J. F. Ammirati, T. E. O´Dell, G. M. Mueller, … and D. L. Czederpiltz. 2004. Terrestrial and lignicolous macrofungi. In: Mueller, G. M., G. F. Bills and M. S. Foster (Edits). Biodiversity of Fungi: Inventory and Monitoring Methods. Academic Press. San Diego, CA, United States of America. pp. 127-172. [ Links ]

Moreno, G., M. Esqueda, E. Pérez-Silva, T. Herrera and A. Altés. 2007. Some interesting gasteroid and secotiod fungi from Sonora, Mexico. Persoonia 19(2):265-280. https://www.ingentaconnect.com/content/nhn/pimj/2007/00000019/00000002/art00007 . (16 de marzo de 2023). [ Links ]

Moreno, G. , M. Lizárraga, M. Esqueda and M. L. Coronado. 2010. Contribution to the study of gasteroid and secotioid fungi of Chihuahua, Mexico. Mycotaxon 112:291-315. Doi: 10.5248/112.291. [ Links ]

Pando M., M., J. L. Pérez D. y D. O. Mendoza A. 2014. Cambio de uso de suelo y fragmentación del paisaje. In: López L., Á. y M. Pando M. (Coords). Región citrícola de Nuevo León, su complejidad territorial en el marco global. Instituto de Geografía de la Universidad Nacional Autónoma de México y Facultad de Ciencias Forestales de la Universidad Autónoma de Nuevo León. Coyoacán, D. F., México. pp. 159-178. [ Links ]

Pérez-López, R. I., G. Mata, A. Aragón G., D. Jiménez G. y O. Romero-Arenas. 2015. Diversidad de hongos silvestres comestibles del cerro El Pinal, municipio de Acajete, Puebla, México. Ecosistemas y Recursos Agropecuarios 2(6):277-289. http://www.redalyc.org/articulo.oa?id=358640694004 . (21 de agosto de 2023). [ Links ]

Quiñónez M., M., F. Garza O., M. Sosa C., T. Lebgue K., P. Lavin M. y S. Bernal C. 2008. Índices de diversidad y similitud de hongos ectomicorrizógenos en bosques de Bocoyna, Chihuahua, México. Ciencia Forestal en México 33(103):59-78. http://cienciasforestales.inifap.gob.mx/index.php/forestales/article/view/741 . (16 de marzo de 2023). [ Links ]

Villarreal, L. and A. Gómez. 1997. Inventory and monitoring wild edible mushrooms in México: challenge and opportunity for sustainable development. In: Palm, M. E. and I. H. Chapela (Edits.). Mycology in sustainable development: Expanding concepts, vanishing borders. Parkway Publishers Inc. Boone, NC, United States of America. 306 p. [ Links ]

Received: March 17, 2023; Accepted: August 11, 2023

Conflict of interests

The authors have no conflict of interest in relation to the publication of this article. The data presented here are original and have not been published or sent to be published by other sources. The authors declare that there is no link with the sponsoring institutions of the research that supports the contributions, so that the published data grant them professional, labor or economic advantages.

Contribution by author

Fortunato Garza Ocañas: collection and identification of species; Jesús García Jiménez: collection and identification of species; Gonzalo Guevara Guerrero: collection and identification of species; Miroslava Quiñónez Martínez: collection of species and writing of the manuscript; María Inés Yáñez Díaz: collection of species and writing of the manuscript.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons