SciELO - Scientific Electronic Library Online

 
vol.10 issue3Anatomy, physiology, manipulation and veterinary applications of the reticular groove. ReviewDevelopment and evaluation of equations to predict body weight of Pelibuey ewes using heart girth author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias pecuarias

On-line version ISSN 2448-6698Print version ISSN 2007-1124

Rev. mex. de cienc. pecuarias vol.10 n.3 Mérida Jul./Sep. 2019

https://doi.org/10.22319/rmcp.v10i3.4386 

Technical notes

Organic matter fertilization improves morphological variables in Nopalea cochenillifera Salm Dyck cv. Miúda grown as forage in Pernambuco, Brazil

Paulina Vazquez Mendozaa  * 

Toni Carvalho de Sousab 

Mercia Virginia Ferreira Dos Santosb 

Oscar Vicente Vazquez Mendozac 

Jose Carlos Batista Dubeux Juniord 

Mario de Andrade Lirab 

a Universidad Autónoma de Guerrero. Centro Regional de Educación Superior de la Costa Chica. 41800, Florencio Villarreal, Guerrero. México.

b Universidade Federal Rural de Pernambuco. Departamento de Zootecnia. Pernambuco. Brasil.

c NOREL México SA DE CV, Querétaro, México

d University of Florida. North Florida Research and Education Center, Marianna, Florida, USA.


Abstract

In forage crops such as cactus morphological characteristics respond to management practices such as fertilization. An evaluation was done to determine if organic matter (OM) fertilization (0, 10,000, 20,000 and 30,000 kg OM ha-1 yr-1 bovine manure), mineral fertilization (0, 120, 240 and 360 kg N ha-1 yr-1, using urea) and cut frequency (annual and biennial) influenced cladode length, width and perimeter, and Cladode Area Index (CAI) values in Nopalea cochinillifera Salm Dyck cv. Miúda, and how these variables related to productivity. The experimental design was random blocks, using a sub-sub-plot arrangement with four replicates. Fertilization with 30,000 kg OM ha-1 year-1 increased cladode width by 9.8 % and length by 17.8 % compared to the control. Cladode perimeter increased proportionally to OM fertilization level. At the optimum fertilization level (25,970 kg ha-1) the CAI value was 68.29 % higher than the control. Mineral fertilization only affected cladode perimeter at 120 kg ha-1 and only with an annual cut; however, at this fertilization level the CAI value was higher with a biennial cut. Organic matter fertilization increased cladode width and length, and CAI values in N. cochenillifera cv. Miúda, while mineral fertilization had only a minimal effect. Biennial cutting frequency results in higher CAI values. Correlations were high between the evaluated variables and dry matter production, highlighting the utility of morphological variables in evaluating productivity.

Key words Forage cactus; Cladode area index (CAI); Fertilization; Cut frequency

Resumen

Las características morfológicas de las plantas forrajeras como el nopal, son influenciadas de acuerdo al manejo recibido, prácticas como la fertilización son importantes; debido a lo anterior el objetivo de esta investigación fue evaluar el efecto de la fertilización con materia orgánica (MO) (0, 10,000, 20,000 y 30,000 kg MO ha-1 año-1 con estiércol bovino) o mineral (0, 120, 240 y 360 kg de N ha-1 año-1 utilizando urea) y la frecuencia de corte (anual y bianual) en la longitud, ancho, perímetro, e Índice del Área de Cladodio (IAC) en cladodios de nopal forrajero cv. Miúda (Nopalea cochenillifera Salm Dyck), y su relación con la productividad. El diseño experimental fue de bloques al azar, con el arreglo de parcelas sub-sub-divididas con cuatro repeticiones. La fertilización con 30,000 kg MO ha-1 año-1 incrementó el ancho y longitud de cladodio de 9.8 a 17.8 % respecto al tratamiento testigo. El perímetro de cladodio se incrementó proporcionalmente cuando aumentó la MO. El IAC fue 68.29 % mayor (con 25 970 kg ha-1) respecto al tratamiento testigo. La fertilización mineral sólo afectó el perímetro de cladodio en el corte anual con dosis de 120 kg ha-1 y el IAC fue mayor en el corte bianual. Se concluyó que la fertilización con MO aumentó el ancho, longitud e IAC en cladodios de nopal forrajero cv Miúda (Nopalea cochenillifera Salm Dyck), mientras que la fertilización mineral tuvo bajo impacto en el ancho, longitud e IAC, el corte bianual favorece el IAC. Se presentó una alta correlación entre las variables evaluadas y la producción de materia seca.

Palabras clave Nopal forrajero; Cladodio (IAC); Fertilización; Frecuencia de corte

The northeast of Brazil accounts for 18.27 % of the country, and most (62.11 %) of this region is semiarid1. Annual rainfall distribution (500 mm)2 is irregular, leading to severe feed shortages in ruminant livestock systems. The cactus species Opuntia sp. and Nopalea sp. can be used as ruminant forage and are adapted to water scarcity, high temperatures and poor soils3,4,5. They are thus valuable alternative feed sources, especially during the dry season. Opuntia ficus-indica Mill and Nopalea cochenillifera Salm Dyck are the two most widely cultivated cactus species in northeast Brazil6.

Nopalea cochenillifera cv. Miúda, commonly known as Nopal Dulce, is a fodder that has the advantage of being resistant to cochineal (Dactylopius opuntiae Cockerell)7,8. This characteristic, in addition to its 6.2 % crude protein (CP) content, 26 % neutral detergent fiber (NDF) content and 78 % digestibility9, makes it a promising alternative livestock feed source. As with any cultivated forage species, N. cochenillifera requires adequate soil fertility to produce properly. Fertilization with organic matter and minerals is common practice in cactus cultivation to compensate for nutrient extraction by this crop and increase forage production efficiency10,11.

The variables used in forage plant ecophysiology research exhibit different responses depending on plant management. In cacti, cladode morphological characteristics are directly related to fresh and dry matter yields12, but few studies use morphological characteristics as productivity indicators. The present study objective was to evaluate the effect of organic and mineral fertilization, and cladode harvest frequency on cladode morphological characteristics in Nopalea cochenillifera Salm Dyck cv. Miúda cultivated in the agreste region of Pernambuco, Brazil.

The experiment was done between June 2011 and May 2013 at the Experimental Station of the Pernambuco Agronomic Institute, Caruaru Municipality, in the agreste region of the state of Pernambuco. This is a transition zone between humid and semi-arid tropical forest zones. This region’s stony soil supports sparse (˂40 and ˃20% coverage), low-level (˂1.5 m height) vegetation13. It is in northeast Brazil (8°14’ S; 35°55’ W) at an altitude of 575 m asl and contains Neolithic Regolithic soil14. During the experimental period precipitation at the site was 1,068.3 mm but varied widely from month to month (Figure 1).

Figure 1 Monthly rainfall (mm) and maximum and minimum temperatures in Caruaru Municipality, Pernambuco, Brazil, from January 2011 to June 2013 

Soil samples were collected at the surface and 20 cm depth and chemically analyzed following the soil analysis method of Empresa Brasileira de Pesquisa Agropecuária15 (Table 1).

Table 1 Prefertilization soil chemistry in experimental area in Caruaru Municipality, Pernambuco, Brazil 

Component Mean SME Component Mean SME¶¶
pH (water) 4.78 0.1 Sodium, mg dm-3 11.50 0.01
Phosphorous, mg dm-3 10.45 3.81 Aluminum, mg dm-3 17.98 0.03
Potassium, mg dm-3 74.29 0.04 Hydrogen, mg dm-3 24.70 0.14
Calcium, mg dm-3 428.00 0.26 S.B., cmolc dm-3 2.78 0.33
Magnesium, mg dm-3 48.62 0.05 CIC§, cmolc dm-3 5.46 0.38
Manganese, mg dm-3 70.42 10.27 VÞ, % 50.05 3.21
Zinc, mg dm-3 12.46 1.66 Carbon, % 1.15 0.06
Iron, mg dm-3 46.20 3.06 M¤, % 8.15 1.97
Copper, mg dm-3 0.06 0.02 OM††, % 1.97 0.10

Mehlich 1; sum of bases; §cation interchange capacity; Þbase saturation; ¤aluminum saturation; †† soil organic matter; ¶¶ standard mean error.

Seven fertilization treatments were evaluated: negative control with no fertilization; fertilization with bovine manure at 10,000, 20,000 and 30,000 kg OM ha-1 yr-1; and mineral fertilization (with added urea) at 120, 240 and 360 kg N ha-1 yr-1. Annual and biennial harvest cutting frequencies were applied. The experimental design was randomized blocks sub-divided into plots, with four replicates. The largest plot (14.4-8.0 m) was used to test organic matter levels; subplots (7.2 x 8.0 m) to evaluate cutting frequencies, and other sub-plots (14.4 x 2.0) to assess nitrogen levels. Each experimental unit consisted of six rows of plants. The two side rows and three plants at the ends were considered edges, leaving an effective sampling area of 33.84 m2 containing 282 plants.

Planting was done between April and May 2011 by sowing mature N. cochenillifera cladodes in rows with 1.2 m between rows and 0.1 m between cladodes. Overall density was 83,336 plants per hectare. Organic fertilization was done at the time of planting (June 2011) and after the first annual cut (June 2012) using bovine manure containing 1.1 kg-1 N, 3.74 kg-1 P and 16.5 g kg-1 K (determined using AOAC methods)16. During the first year of cultivation mineral fertilization was done from 5 June to 19 July 2011, and during the second year on 28 June, 23 July and 19 August 2012. Harvest of cladodes was complete, leaving only the mother plant. Cladode length (cm), width (cm) and perimeter (cm) were traced onto a sheet of white paper (A4 size). The outline of two cladodes per sub-subplot were drawn and examined with a leaf area analyzer (Portable Laser Leaf Area Meter CI -202 Bio-Science Inc.®). The CAI was evaluated by adding the area of one plant’s cladodes (m2) (considering both sides of the cladode) and dividing it by the soil surface (0.12 m2) occupied by each plant17. Calculations were done of the correlation coefficient between dry matter (DM) production18 and the variables of cladode length, width and perimeter, as well as the CAI. The data were analyzed using the MIXED procedure in the SAS software package19. The Tukey test (P≤0.05) was applied to the factor cut frequency, and polynomial orthogonal contrasts (P≤0.05) were applied to the factors organic and nitrogen fertilization.

Cladode length, width and the CAI values exhibited no effects (P>0.05) from mineral fertilization. This could have been due to irregular rainfall during the experimental period (Figure 1), which would affect nutrient absorption, or low soil organic matter content (Table 1). Similar effects have been reported for mineral fertilization on morphological characteristics and biomass production in N. cochenillifera cv. Miúda. In one study these were attributed to the root system, the growth of which responds to rainfall, meaning that irregular rainfall distribution can negatively affect nitrogen absorption efficiency and increase nutrient loss through leaching during excess rainfall or volatilization during its absence20. Positive effects from nitrogen and mineral phosphate fertilization have been observed in the production of other cactus species such as Opuntia lindheimeri, but only two years after crop establishment21.

Organic fertilization is known to promote crop growth and production22. In the 30,000 kg ha-1 year-1 treatment, cladode width and length increased proportionally to organic fertilization (R2= 0.26 and 0.47; P≤0.001), and increased 9.8 and 17.8 % (respectively) versus the control (P≤0.05) (Figure 2).

Figure 2 Cladode length and width in Nopalea cochenillifera Salm Dyck cv. Miúda fertilized with bovine manure (Agreste region, Pernambuco, Brazil) 

This is similar to studies showing that cladode length in O. ficus-indica cv. Lisa increased gradually over three consecutive years in response to organic fertilization with bovine manure at 20,000, 40,000 and 60,000 kg ha-1 yr-1, as well as in the control (0 kg ha-1 yr-1 fertilization)23. In another study using higher fertilization rates (90,000 kg ha-1 yr-1 bovine manure) over a shorter period (600 d), cladode length in O. ficus-indica cv. Gigante increased only 8 % compared to the control24. In a previous study cladode width in O. ficus-indica did not change (P>0.05) in response to application of bovine manure at 0, 20,000, 40,000 and 60,000 kg ha-123.

Organic fertilization, mineral fertilization and an annual cut frequency affected cladode perimeter (P≤0.05). This increase became larger (P≤0.05) in a linear manner in response to organic matter fertilization. Cladode perimeter also depended on the interaction between mineral fertilization and cut frequency (Figure 3). This variable increased at 0.339 cm per 1,000 kg OM and 360 kg N per ha-1, and 0.211 cm per 1,000 kg OM and 120 kg N ha-1. The cladode perimeter increase rate was higher with annual cuts (0.211 cm per 1,000 kg OM) than biennials (0.0304 cm per 1,000 kg OM).

Figure 3 Cladode perimeter in Nopalea cochenillifera Salm Dyck cv. Miúda in response to organic fertilization, mineral fertilization and cut frequency (Pernambuco, Brazil) 

In response to organic fertilization level the cladode area index (CAI) exhibited a quadratic trend (P≤0.05) with proportional increases in the 10,000 and 20,000 kg OM ha-1 year-1 treatments (Figure 4). The maximum CAI value was reached at 25,970 kg OM ha-1 year-1; organic fertilization levels higher than this did not affect CAI values. This plateau in CAI values may be due to the shading effect, which consists of lack of exposure of the photosynthetically active area and can lead to lower production under high plant densities25. For instance, in one study spacing between plants and organic fertilization level affected CAI values in Opuntia ficus-indica cv. Gigante, with higher values at spacings of 1 x 0.5 m and organic fertilization levels between 60,000 and 90,000 kg ha-1 yr-124. Both this spacing and fertilization level are higher than those used in the present study. Other types of organic fertilizers produce different responses. When a biofertilizer based on bat guano and chopped up cladodes was used at 15,000, 30,000, 45,000 and 60,000 kg ha-1 yr-1 on O. ficus-indica cv. Gigante increases of 30 % in the photosynthetically active area were observed26. However, this 30 % increase in CAI values is notably less than the 68.9 % (versus the control) observed in the present study at the of 25,970 kg ha-1 yr-1 fertilization level.

Figure 4 Cladode area index (CAI) values in Nopalea cochenillifera Salm Dyck cv. Miúda in response to organic fertilization (Pernambuco, Brazil) 

Cut frequency did affect CAI (P≤0.05). Plants cut at two years had higher (P≤0.05) average CAI values (4.7) than those cut annually (2.2). This difference can be attributed to a smaller residual photosynthetic area in plants subjected to annual cutting than in those cut biennially since a low CAI value represents light interception and slower plant growth27. The effect of cutting frequency may also be due to other factors. For instance, dry matter production in O. ficus-indica was reported to be higher when secondary cladodes were not cut28, possibly because plants with secondary-level cladodes have a larger CAI which represents a larger photosynthetic area29,30.

Correlation coefficient analyses between productivity and morphological variables identified a high correlation between the evaluated variables, suggesting that measurement of morphological variables can be used as a productivity indicator (Table 2).

Table 2 Correlation coefficients between morphological variables and production (t DM) in Nopalea cochenillifera Salm Dyck cv. Miúda 

Variables Productionǂ CAI Width Length Perimeter
Productionǂ 0.94** 0.95** 0.82** 0.91**
CAI 0.86** 0.86** 0.83**
Width 0.81** 0.95**
Length 0.88**
Perimeter

** (P<0.01); * (P<0.05). CAI = cladode area index. ǂ Source: Souza TC, 201518.

In Nopalea cochenillifera Salm Dyck) cv. Miúda, fertilization with bovine manure increases cladode width and length, and cladode area index (CAI) values, while mineral fertilization with urea has little or no impact on these variables. Cladode area index (CAI) values were higher when using a biennial cut frequency. Correlation was high between morphological and production variables, highlighting the importance of studying morphological variables in this forage crop.

Acknowledgements

The research reported here was part of a research visit by PVM under the supervision of Dr. Luis Alberto Miranda Romero and Dr. Mercia Virginia Ferreira dos Santos. This research was financed by the CONACYT, the Universidad Federal Rural de Pernambuco and the Universidad Autónoma Chapingo.

REFERENCES

1. Ministério da Integração Nacional. Nova Delimitação do Semi-Árido Brasileiro. Secretaria de Políticas de Desenvolvimento Regional. Brasília, D.F. Brasil. 2005. [ Links ]

2. Silva VPR, Pereira ERR, Almeida RSR. Estudo da variabilidade anual e intra-anual da precipitação na região nordeste do Brasil. Rev Bras Metereo 2012;27(2):163-172. [ Links ]

3. Fuentes-Rodríguez J. Feeding prickly pear cactus to small ruminants in Northern Mexico. I. Goats. J Prof Assoc Cactus Dev 1997;2:23-25. [ Links ]

4. Luttge U. Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 2004;93:629-652. [ Links ]

5. De Waal HO, Zeeman DC, Combrinck JW. Wet faeces produced by sheep fed dried spineless cactus pear cladodes in balanced diets. S Afr J Anim Sci 2006;36:10-13. [ Links ]

6. Galvão Jr. JGB, Silva JBA, Morais JHG, Lima RN. Palma forrageira na alimentação de ruminantes: cultivo e utilização. Acta Vet Bras 2014;8:78-85. [ Links ]

7. Vasconcelos AGV, Lira MA, Cavalcanti VALB, Santos MVF. Seleção de clones de palma forrageira resistentes à cochonilha do carmim (Dactylopius ceylonicus). Rev Bras Zootecn 2009;38:827-831. [ Links ]

8. Neves ALA, Pereira LGR, Santos RD, Voltolini TV, Araújo SA, Moraes SA, Aragão ASL, Costa CTF. Plantio e uso da palma forrageira na alimentação de bovinos leiteiros no Semiárido brasileiro. 1ª ed. Embrapa Gado de Leite, Juiz de Fora M. G. Comunicado Técnico 62. 2010. [ Links ]

9. Batista AM, Mustafa AF, McAllister T, Wang Y, Soita H, McKinnon JJ. Effect of variety on chemical composition, in situ nutrient disappearance and in vitro gas production of spineless cacti. J Sci Food Agric 2003;83:440-445. [ Links ]

10. Dubeux Jr. JCB, Araújo Filho JT, Santos MVF, Lira MA, Santos DC, Pessoa RAS. Adubação mineral no crescimento e composição mineral da palma forrageira clone IPA- 20. Rev Bras Ciênc Agrár 2010;5:129-135. [ Links ]

11. Santos DC, Farias I, Lira MA, Santos MVF, Arruda GP, Coelho RSB, Dias FM, Melo JN. Manejo e utilização da palma forrageira (Opuntia e Nopalea) em Pernambuco. Empresa Pernambucana de Pesquisa Agropecuária (IPA). Documentos 30. Recife. Brasil. 2006. [ Links ]

12. Neder DG, Costa FR, Edvan RL, Filho LTS. Correlations and path analysis of morphological and yield traits of cactus pear accessions. Crop Breed Appl Biotechnol 2013;13:203-207. [ Links ]

13. Brito CILV, Ffolliot PF, Peixoto PSA. Uma classificação morfo-estructural para descrição e avaliação da biomassa da vegetação da caatinga. Rev Caatinga 2008;21(2):204-213. [ Links ]

14. EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 3ed. Rio de Janeiro: Embrapa Solos. 2013. [ Links ]

15. EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). Manual de Métodos de Análise de Solo. Centro Nacional de Pesquisa de Solos. 2a ed. Rio de Janeiro, Brasil. 1997. [ Links ]

16. AOAC (Association of Official Agricultural Chemists). Official Methods of Analysis. 15th. ed. Association of Official Agricultural Chemists, Washington, DC. 1990. [ Links ]

17. Nobel PS, Bobich EG. Environmental biology. In: Nobel PS editor. Cacti: Biology and Uses. University of California Press, California, USA. 2002. [ Links ]

18. Souza TC. Sistemas de cultivo para palma forrajeira cv Miúda (Nopalea cochenillifera Salm Dyck) [tesis doctorado]. Brasil, PR: Universidade Federal Rural de Pernambuco; 2015. [ Links ]

19. SAS (Statistical Analysis System). SAS/STAT User´s Guide (Release 9.3). Cary, NC, USA. SAS Inst. Inc. 2012. [ Links ]

20. Cunha DNFV, Gomes ES, Martuscello JA, Amorim PL, Silva RC, Ferreira PS. Morfometria e acúmulo de biomassa em palma forrageira sob doses de nitrogênio. Rev Bras Saúde Produç Anim 2012;13:1156-1165. [ Links ]

21. González CL. Potential of fertilization to improve nutritive value of prickly pear cactus (Opuntia lindheimeri Engelm.) J Arid Environ 1989;16:87-94. [ Links ]

22. Julca-Otiniano A, Meneses-Florián L, Blas-Sevillano R, Bello-Amez S. La materia orgánica, importancia y experiencias de su uso en la agricultura. IDESIA 2006;24:49-61. [ Links ]

23. Trejo-Escareño HI, Salazar-Sosa E, López-Martínez JD, Vázquez-Vázquez C. Respuesta del nopal forrajero (Opuntia fícus-indica L.) a la aplicación de estiércol bovino solarizado. AGROFAZ 2014;14:87-95. [ Links ]

24. Donato PER., Pires AJV, Donato SLR, Bonomo P, Silva JA, Aquino AA. Morfometria e rendimento da palma forrageira ‘Gigante’ sob diferentes espaçamentos e doses de adubação orgânica. Rev Bras Ciênc Agrár 2014;9:151-158. [ Links ]

25. Nobel PS. Ecophysiology of Opuntia ficus-indica. In: Mondragon-Jacobo C, Perez-Gonzalez S editors. Cactus (Optunia spp.) as forage. FAO Plant Protection and Production Paper 169, Rome, Italy. 2002. [ Links ]

26. García CV, Varnero MT, Espinoza M. Efecto de bioabono sobre el área fotosintéticamente activa, producción de cladodios y eficiencia de recuperación de N en un cultivo de tuna (Opuntia ficus-indica L.) en el primer año post-plantación. J Prof Assoc Cactus Dev 2001;4:93-104. [ Links ]

27. Dubeux JCB, Ben Salem H, Nefzaoui A. Producción y utilización de nopal forrajero en la nutrición animal. En: Inglese P, Mondragon JC, Nefzaoui A, Sáenz C. Ecología del cultivo, manejo y usos del nopal. FAO, Roma, Italia. 2018. [ Links ]

28. Alves RN, Farias I, Menezes C, Simões R, Lira MA, Santos DC. Produção de forragem pela palma após 19 anos sob diferentes intensidades de corte e espaçamentos. Rev Caatinga 2007;20:38-44. [ Links ]

29. Farias I, Lira MA, Santos DC, Filho JJT, Santos MVF, Fernandes APM, Santos VF. Manejo de colheita e espaçamento da palma-forrageira, em consórcio com sorgo granífero, no agreste de Pernambuco. Pesqui Agropecu Bras 2000;35:341-347. [ Links ]

30. Lira MA, Santos MVF, Dubeux Jr. JCB, Mello ACL. Sistema de produção de forragem: alternativas para sustentabilidade da pecuária. Rev Bras Zootec 2006;35:491-511 [ Links ]

Received: February 24, 2017; Accepted: August 22, 2018

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons