SciELO - Scientific Electronic Library Online

 
vol.14 issue4Effect of bioproducts on the development of coffee seedlings inthenurseryPhysiological indices of seven forage species in different tropical environments author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias agrícolas

Print version ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.14 n.4 Texcoco May./Jun. 2023  Epub Aug 04, 2023

https://doi.org/10.29312/remexca.v14i4.3109 

Articles

Morphological and productive characterization of accessions of non-toxic Jatropha curcas L. in the central region of Veracruz

Florencia García-Alonso1 

Eliseo García-Pérez2 

Arturo Pérez-Vázquez2 

Ricardo Martínez-Martínez3 

Lorena Casanova-Pérez1  * 

1Universidad Tecnológica de la Huasteca Hidalguense. Carretera Huejutla Chalahuiyapa S/N Col. Tepoxteco, Huejutla, Hgo. Tel: 017898962089 (florencia.garcia@uthh.edu.mx; lorena.casanova@uthh.edu.mx).

2Colegio de Postgraduados, Campus Veracruz. Carretera Federal Xalapa-Veracruz, km 88.5 CP 91690, AP 421. Veracruz (geliseo@colpos.mx; parturo@colpos.mx).

3Universidad de Guadalajara-Centro Universitario de la Costa Sur. Avenida Independencia Nacional 151, Centro, Autlán de Navarro, Jalisco, México, CP 48900 (ricardo.mmartinez@academicos.udg.mx).


Abstract

Jatropha curcas belongs to the family Euphorbiaceae, native to Mexico and Central America, currently grows in tropical and subtropical regions of the world. It is a multipurpose plant, whose interest in recent years is related to its potential as a raw material for biodiesel production. The objective of this research was to evaluate the morphological and productive characteristics of accessions of non-toxic Jatropha curcas L., collected in different regions of Veracruz and that were propagated by seed in the central region of the state in 2019. The plant material consisted of 23 accessions with five repetitions, plants that were three years old. The variables recorded were: plant height, stem diameter, branches (primary, secondary, tertiary), leaf length and width, flower buds, number of clusters and fruits; length, width, color and number of seeds per fruit, in seeds the weight, length, width, thickness and total weight of seeds per plant were recorded. The analysis of variance detected significant differences (p≤ 0.05) between accessions for most variables. The principal component analysis, the first two explained 57.66% and 60.80% of the variation. In seed-propagated accessions, the outstanding variables were: flower buds, clusters, fruits and seed production (accessions I-34, I-32 and I-47). These accessions have the greatest potential and vigor to be included in a genetic improvement program. It is concluded that there is a wide morphological variation in the accessions studied.

Keywords: morphological characterization; production; propagation

Resumen

Jatropha curcas pertenece a la familia Euphorbiaceae, originaria de México y Centro América, actualmente crece en regiones tropicales y subtropicales del mundo. Es una planta multipropósito, cuyo interés en los últimos años está relacionado a su potencial como materia prima para producción de biodiesel. El objetivo de esta investigación fue evaluar las características morfológicas y productivas de accesiones de Jatropha curcas L., no tóxicas, recolectadas en distintas regiones de Veracruz y que fueron propagadas por semilla en la región centro del estado en el año 2019. El material vegetal consistió en 23 accesiones con cinco repeticiones, plantas que tenían tres años. Las variables registradas fueron: altura de planta, diámetro de tallo, ramas (primarias, secundarias, terciarias), longitud y ancho de hoja, brotes florales, número de racimos y frutos; longitud, ancho, color y número de semillas por fruto, en semillas se registró el peso, longitud, ancho, espesor y peso total de semillas por planta. El análisis de varianza detectó diferencias significativas (p≤ 0.05) entre accesiones para la mayoría de las variables. El análisis de componentes principales, los primeros dos explicaron 57.66% y 60.80% de la variación. En accesiones propagados por semilla las variables sobresalientes fueron: brotes florales, racimos, frutos y producción de semilla (accesiones I-34, I-32 e I-47). Estas accesiones tienen el mayor potencial y vigor para ser incluidos en un programa de mejoramiento genético. Se concluye que existe una amplia variación morfológica en las accesiones estudiados.

Palabras clave: caracterización morfológica; producción; propagación

Introduction

Jatropha is an oleaginous plant commonly known as physic nut, native to Tropical America, which belongs to the family Euphorbiaceae with approximately 188 species distributed mainly in tropical and subtropical regions of the world (Henning, 2004; Mabberley, 2005). It is a plant valued for its use in the production of biodiesel (Rajagopal, 2008). This species also has insecticidal and fungicidal properties (Nwosu and Okafor, 2007), is also used for food when it comes from non-toxic materials (Makkar et al., 2007) and for medicine when using the latex of its leaves (Mujemdar and Misar, 2004).

For that reason, species such as J. curcas require an agronomic characterization that allows knowing the constitution and functioning of its morphological components (Oliveira et al., 2009). This procedure describes the morphological, phenological and productive characteristics that distinguish one material from another within the same species (Valdés-Rodríguez et al., 2018). In recent years, this interest has already provided some findings regarding physiological, genetic, agronomic, agroecological and production characteristics of this species (Valdés-Rodríguez and Pérez-Vázquez, 2013; Zavala et al., 2016; Wencomo-Cárdenas et al., 2020).

Currently, works for the morphological characterization of J. curcas continue (Laviola, 2009), since the agronomic characteristics of J. curcas are diverse. This is due to its wide agroecological plasticity to develop under conditions of water stress (Trabucco et al., 2010; Pérez-Vázquez et al., 2013) and grow in infertile soils (Balota et al., 2011; Valdés-Rodríguez et al., 2020). Consequently, the objective of this research was to evaluate the morphological and productive characteristics of accessions of non-toxic Jatropha curcas L., located in the experimental field of the Veracruz Campus of the Colegio de Postgraduados.

Materials and methods

Study area. We worked with J. curcas plants from the Germplasm Bank of the Veracruz Campus of the Colegio de Postgraduados. The temperature data were obtained from the meteorological station of the institution and correspond to the year 2019. The climate of type Aw (w) (i ́) g, which corresponds to warm subhumid with rains in summer, an average annual rainfall of 1 100 mm and with an average temperature of 26 °C and a temperature fluctuation of 5-7 °C, with 5% rainfall in winter (García, 1988). In the evaluation period, a maximum temperature of 36 °C during April and a minimum of 14 °C in January were recorded, with a rainfall of 206 mm in September. In the rainy season, a rainfall of 28 mm was recorded.

Vegetative material. We worked with 23 accessions of J. curcas, three years old, collected in the state of Veracruz. Fruits and vegetative material were collected in 2019, and from this the germplasm bank was established in 2020. The seeds were sown in polyethylene bags and transplanted into the field in March 2020. The experiment was established in 2020 under a randomized complete block design and 23 accessions per seed were established, with five replications. (Tables 1) shows the origin and geographical location of the accessions collected.

Table 1 Origin and geographical location of the 23 accessions of non-toxic J. curcas evaluated, from the germplasm bank of the Veracruz Campus. 

Accessions Locality Region N Latitude W Longitude Altitude (masl)
I-04 Santa Mónica Huasteca Alta 21°18' 32.8'' 98°20' 29.3'' 130
I-05 Tepatlán Grande Huasteca Alta 21°18' 20.9'' 98°16' 30.0'' 94
I-08 Tzicuatitla Huasteca Baja 21°11' 50.8'' 97°59' 18.9'' 228
I-11 Zacamixtle Huasteca Baja 21°14' 55.3'' 97°43' 27.6'' 136
I-13 Papantla Totonaca 20°27' 28.9'' 97°19' 16.2'' 173
I-14 Papantla Totonaca 20°27' 26.8'' 97°19' 11.6'' 170
I-18 Insurgentes Socialistas Totonaca 20°11' 25.5'' 97°15' 53.4'' 119
I-22 Totomoxtle Totonaca 20°28' 01.0'' 97°15' 19.0'' 43
I-25 Costa Esmeralda Totonaca 20°15' 22.8'' 96°48' 00.6'' 5
I-26A Cementeres Nautla 20°10' 38.9'' 96°53' 37.0'' 9
I-26B Cementeres Nautla 20°10' 38.9'' 96°53' 37.0'' 9
I-27 Progreso Nautla 20°06' 57.0'' 96°00' 51.1'' 70
I-30 Reforma Km 9 Nautla 19°53' 19.6'' 96°48' 33.8'' 631
I-31 Yecuautla Nautla 19°50' 35.0'' 96°48' 29.1'' 1 054
I-32 Tuzamapan Capital 19°24' 00.7'' 96°52' 05.9'' 892
I-34 Alvarado Papaloapan 18°47' 26.1'' 95°45' 31.7'' 22
I-41 Revolución de Abajo Tuxtlas 18°38' 53.9'' 95°06' 50.0'' 8
I-47 El Chichón Olmecas 17°45' 10.2'' 94°06' 32.6'' 50
I-48 Acalapa II Olmecas 17°57' 47.1'' 94°13' 58.7'' 42
I-62 Cuautlapan Montañas 18°53' 05.4'' 97°01' 02.0'' 1 006
I-64 Tepetates Sotavento 19°11' 39.7'' 96°20' 38.0'' 16
I-77 Pueblillo Totonaca 20°15' 15.0'' 97°15' 48.0'' 78
I-80 Buenos Aires Nautla 19°56' 09.0'' 95°50' 00.0'' 321

Soil analysis. A soil sampling was carried out in the germplasm bank, in a zigzag pattern at two depths (0-20 cm and 20-40 cm), which were sent to the water-soil and plant laboratory of the Colegio de Postgraduates, Veracruz Campus.

Morphological variables evaluated. The descriptors used were those indicated by Laviola (2009) and the Jatropha spp. Network (SAGARPA-SNICS 2014). The variables recorded were: plant height (PlH), measured from the base to the apex of the plant; stem diameter (SD) with a vernier at 10 cm from the ground; leaf length and width (LL and LW), the middle part of the leaf blade was measured; number of primary, secondary and tertiary branches (NB1, NB2, NB3), flower buds (NFB), clusters (NCL) and fruits (NF) per plant, length (FL), width (FW), shape (FS) of fruit and fruit color (FC) according to the Munsell table, seeds (NSF) per fruit.

The beginning of the recording of morphological variables began between May-October, performing a weekly sampling. In relation to the harvest of fruits, these were monitored every three days to obtain greater precision regarding the production of fruits per tree. The fruit harvest was carried out from May to October 2019, the seeds were extracted and dried at room temperature.

Production of seeds (PRS) per plant. The seeds were extracted manually and a sample of 30 seeds was taken randomly, for which the length (SL), width (SWi), thickness (ST) and weight (SWe) were determined. Statistical analysis. The data obtained were recorded in a spreadsheet of Excel Version 2010® and the analysis was performed using the program SAS (Statistical Analysis System) v. 9.4, an Anova and a Tukey mean test (p≤ 0.05) were carried out.

A principal component (PC) analysis was performed with all variables, and a correlation matrix using the Princomp procedure of SAS. The graphical representation of the principal components (PC1) and (PC2) aimed to identify similarities and differences between the accessions. Subsequently, a cluster analysis was carried out by means of the Euclidean distance and the clustering method of Unweighted Pair Group Method with Arithmetic Mean (UPGMA), with the statistical package Ntsys® (Rohlf, 2009).

Results and discussion

Morphological characterization

The analysis of variance detected statistically significant differences between accessions in 10 of the 20 morphological descriptors evaluated, particularly for the variables plant height (p= 0.0001), leaf width (p= 0.0018), flower buds (p= 0.0001), clusters (p= 0.0001), fruits (p= 0.0001), number of seeds per fruit (p= 0.0001), seed weight (p= 0.0001), seed length (p= 0.0001), seed width (p= 0.0001) and seed production (p= 0.0001). According to the Tukey mean test (p≤ 0.05), the maximum values in plant height were: 3.13 m and 3.00 m in accessions I-77, I-13 and I-26B. Manurung (2007) mentions that J. curcas is able to reach between 3 and 5 m and even up to 6 m in height in full development, so there are differences between accessions of the same age. Accession I-77 showed the highest number of flower buds with 264.

The maximum value of clusters was for accession I-34 with 181.60. Accessions I-32 and I-34 stood out with the highest number of fruits per plant with 558 and 531. These results are higher than those reported by Machado and Suárez (2009), who indicate that an African provenance had 455 fruits 240 days after being established in the field. Machado (2011) reports 102 fruits for a one-year-old provenance from Cape Verde; Srivastava et al. (2011) report 210 fruits in three-year-old plants propagated by seed. Accession I-25 stood out in the number of seeds per fruit with an average of 2.8, a normal number of seeds per fruit, which coincides with what was reported by Basha and Sujatha (2007).

In seed characterization, accession I-22 stood out in weight with an average of 0.84 g, accession I-62 in length with 20.13 mm and accession I-34 with 11.01 mm in width. These values coincide with what was reported by Martínez et al. (2010) and Valdés et al. (2013), who mention an average weight of 0.84 g, 17.41 mm in length, and 11.45 mm in seed width. In production of seeds per plant, accessions I-34 and I-32 stood out with 754.1 and 667.6 g respectively.

These results are superior to those of Sosa-Segura et al. (2012), who reported 30 to 36 fruits per plant, in germplasm from Puebla and Morelos, a seed production of 39 to 50 g in one-year-old plants. These data, even though they are not comparable due to the age differences of the plants, are a reference on the productive behavior of J. curcas. Guerrero et al. (2011) mention that the morphological and productive characteristics of greatest interest are: seed length, seed width, ratio of length and width of seed, number of seeds per fruit, seed weight, number of fruits per cluster and number of branches per plant. The parameters obtained in the present morphological characterization are shown in Table 2.

Table 2 Morphological characteristics of 23 accessions of J. curcas, sown in the central region of the state of Veracruz. 

ACC PlH (m) LW (cm) NFB NC NF NSF SWe (g) SL (mm) SWi (mm) PRS (g)
I-04 2.53±0.3 ab 14.44±0.7 ab 167.60±41.7 ab 101.40±34.2 ab 368.40±124.1 ab 2.47±0.1 ab 0.68±0.02 ab 18.61±0.2 cd 9.94±0.2 de 247.6±65.4 dc
I-05 1.68±0.9 ab 15.29±0.5 ab 57.50±6.4   ab 37.50±16.3 ab 118.50±  6.4   ab 2.31±0.3 ab 0.74±0.03 bc 19.22±0.4 ab 10.05±0.1 cd 91.7±58.8 dc
I-08 2.60±0.4 ab 13.70±0.8 ab 197.00±68.7 ab 91.00±32.6 ab 304.80±102.0 ab 1.97±0.3 ab 0.69±0.04 f 17.99±0.2 cd 9.77±0.4 e 173.3±79.8 dc
I-11 2.20±0.3 ab 15.78±1.0 a 55.67±18.3 ab 64.00±69.4 ab 99.00± 47.3 ab 2.04±0.5 ab 0.70±0.07 de 18.14±0.8 de 9.72±0.1 e 51.3±47.9 d
I-13 3.00±0.3 a 13.34±0.6 b 163.20±33.6 ab 134.60±35.4 ab 382.20± 92.2 ab 2.28±0.1 ab 0.72±0.02 cd 18.04±0.2 cd 10.14±0.1 bc 291.0±77.6 bc
I-14 2.54±0.2 ab 13.22±0.7 b 138.80±41.4 ab 56.40±24.3 ab 150.00± 57.1 ab 2.22±0.2 ab 0.81±0.04 ab 19.07±0.5 bc 10.17±0.2 bc 147.2±79.8 dc
I-18 2.68±0.2 ab 14.65±0.5 ab 110.60±11.3 ab 76.80± 7.9 ab 251.60± 42.3 ab 2.40±0.1 ab 0.77±0.02 ab 18.82±0.3 cd 10.31±0.2 bc 240.3±149.4 dc
I-22 1.99±0.5 ab 14.76±0.9 ab 46.00±1.0   ab 39.50±50.2 ab 142.50±188.8 ab 2.08±0.0 ab 0.84±0.0  a 19.82±0.0 ab 10.61±0.0 ab 183.5± 0.0 dc
I-25 2.61±0.4 ab 15.19±0.7 ab 172.20±38.5 ab 133.00±57.3 ab 407.80±223.1 ab 2.80±0.0 a 0.74±0.02 bc 18.47±0.2 cd 10.10±0.2 cd 374.3±191.1 cd
I-27 2.63±0.2 ab 14.96±1.0 ab 167.80±55.0 ab 110.60±48.4 ab 383.20±146.4 ab 2.56±0.1 ab 0.73±0.02 bc 18.53±0.4 cd 10.33±0.5 bc 276.3± 84.9 dc
I-30 2.86±0.2 ab 15.17±0.9 ab 154.00±33.7 ab 104.80±55.7 ab 233.60±78.0   ab 2.65±0.2 ab 0.77±0.02ab 18.27±0.2 de 10.61±0.2 ab 257.2± 56.6 dc
I-31 2.74±0.1 ab 14.48±0.9 ab 185.40±21.4 ab 68.20±22.1 ab 190.20±43.9   ab 2.45±0.1 ab 0.72±0.04 cd 18.09±0.3 de 10.00±0.3 cd 70.8± 19.8 d
I-32 2.81±0.3 ab 14.97±1.3 ab 225.40±51.6 ab 162.00±25.9 ab 558.40±122.1 a 2.64±0.1 ab 0.78±0.03 ab 18.56±0.4 cd 10.77±0.2 ab 667.6± 50.7 ab
I-34 2.89±0.2 ab 15.43±1.0 ab 198.80±62.4 ab 181.60±58.1 a 530.60±248.0 ab 2.53±0.1 ab 0.79±0.03 ab 18.53±0.4 cd 11.01±0.1 a 754.1±398.2 a
I-41 2.91±0.1 ab 14.67±0.9 ab 191.20±47.2 ab 95.60±49.3 ab 371.40±219.3 ab 2.42±0.2 ab 0.76±0.01 ab 18.31±0.5 cd 10.56±0.1 ab 361.2±191.1 bc
I-47 2.74±0.2 ab 15.34±1.0 ab 153.20±45.5 ab 111.60±29.1 ab 434.40±126.8 ab 2.48±0.2 ab 0.79±0.03 ab 18.92±0.4 bc 10.19±0.1 bc 465.3±156.4 abc
I-48 2.60±0.2 ab 14.73±1.2 ab 128.25±34.4 ab 99.25±6.8 ab 396.75±84.0 ab 2.43±0.1 ab 0.78±0.03 ab 18.63±0.5 cd 10.19±0.5 bc 286.5± 62.2 dc
I-62 2.50±0.2 ab 14.38±0.8 ab 144.00±50.0 ab 88.80±18.5 ab 377.00±101.4 ab 2.50±0.2 ab 0.81±0.05 ab 20.13±0.2 a 10.31±0.1 bc 287.5± 90.1 dc
I-64 2.58±0.2 ab 14.62±0.6 ab 121.67±29.8 ab 96.67±16.8 ab 347.33± 88.9 ab 2.63±0.2 ab 0.73±0.02 ab 18.20±0.1 de 10.74±0.2 ab 357.8± 99.4 bc
I-77 3.13±0.3 a 15.48±0.2 ab 246.00±38.0 a 94.00±6.2 ab 278.67±56.1  ab 2.44±0.1 ab 0.74±0.01 bc 18.25±0.0 de 10.22±0.0 bc 239.0± 27.8 dc
I-80 2.87±0.4 ab 14.63±0.8 ab 167.80±89.9 ab 66.20±22.0 ab 158.40±89.9  ab 2.24±0.1 cd 0.76±0.01 ab 18.59±0.2 cd 10.07±0.2 cd 125.1± 55.4 dc
I-26A 2.64±0.3 ab 14.30±0.9 ab 135.00±26.0 ab 99.00±18.0 ab 288.33±46.3  ab 2.76±0.1 ab 0.75±0.04 bc 18.85±0.5 cd 10.31±0.3 bc 294.8±146.8 bc
I-26B 3.00±0.3 a 15.11±1.0 ab 191.60±57.7 ab 117.00±25.2 ab 381.44±130.2 ab 2.76±0.1 ab 0.78±0.03 ab 19.02±0.4 bc 10.29±0.2 bc 360.8± 86.3 bc

Means with different letters in the same column are statistically different, according to the Tukey test (p≤ 0.05); ACC= accession; PlH= plant height; LW= leaf width; NFB= number of flower buds; NC= number of clusters; NF= number of fruits; NSF= seeds per fruit; SWe= seed weight; SL= seed length; SWi= seed width; PRS= production of seeds.

The first two principal components (PC) explained 57.66% of the total observed variation. The first component explained 34.84%, the second 22.82%. The variables with the highest descriptive value integrated in the PC1 are: number of clusters, flower buds, leaf length, plant height, number of fruits per plant and weight of seeds. The PC2 integrated the variables: seed weight, seed width, leaf width, seed length, seeds per fruit, secondary branches and seed thickness (Table 3).

Table 3 Values of the principal component (PC) analysis with the variables of the highest descriptive value of the total variable in plant, fruit and seed of J. curcas

Characteristics PC1 PC2
Height (m) 0.301671 -0.165093
Diameter (mm) 0.265919 -0.095816
Primary branches 0.257299 -0.129041
Secondary branches 0.227279 -0.272969
Leaf length (cm) 0.308554 0.137911
Leaf width (cm) 0.163223 0.321368
Number of flower buds/plant 0.325952 -0.189021
Clusters/tree 0.34729 0.11357
Number of fruits/plant 0.30123 0.141859
Fruit length (mm) 0.020323 0.108105
Fruit width (mm) 0.20841 0.224884
Seeds/fruit 0.185248 0.281105
Fruit color 0.230813 -0.188615
Seed weight (g) -0.108579 0.379092
Seed length (mm) -0.204955 0.284673
Seed width (mm) 0.103584 0.3709
Seed thickness (mm) -0.068378 0.263486
Seed weight (g) 0.283445 0.269734
Explained variance (%) 34.84 22.82
Cumulative variance (%) 34.84 57.66

The graphical representation of the first two principal components, group I was formed by the accessions I-34, I-32, I-26B, I-30, I-25, I-47, I-26A, I-64 and I-27, which were characterized by presenting a greater number of clusters, flower buds, leaf length, plant height, number of fruits per plant and weight of seeds.

Group II was formed by accessions I-22, I-62, I-48 and I-18, it was distinguished by presenting greater seed weight, seed width, leaf width, seed length, seeds per fruit, secondary branches, and seed thickness. In group III are accessions I-14, I-80, I-31 and I-04, this group presents intermediate values in stem diameter, fruit width, but lower values in clusters, fruits and seed weight. In group IV were accessions I-08, I-13, I-41 and I-77, this group stands out for presenting a greater number of primary branches, fruit color and fruit width, in addition to having an intermediate value in flower buds and seed weight (Figure 2).

Figure 2 Scatter plot of 23 accessions of Jatropha curcas L., based on the first two principal components of 18 morphological and productive variables. 

The cluster analysis gave rise to the formation of four groups Figure 3, which differed in their conformation from those obtained in the principal component analysis. This difference is due to the fact that only the variables that explained PC1 and PC2 are used in the principal component analysis.

Figure 3 Dendrogram of 23 accessions of J. curcas, based on 18 outstanding variables. 

Likewise, in the cluster analysis, when using all the variables evaluated in obtaining the dendrogram, it was obtained that group I included I-04, I-27, I-13, I-48, I-62, I-18, I-26A, I-25, I-41, I-26B, I-32, I-47, I-64, I-30 and I-34, which were characterized by having stem diameter of 65.67 mm, length and width of leaf of 14.10 and 14.74 cm, 161.63 in flower buds, clusters of 114.18, number of fruits with 380.83, length and width of fruit of 30.21 mm-23.26 mm and seed weight with 368.15 g.

In group II was accession I-22, which presented 14.76 cm in leaf width, seed weight with 0.84 g, width 19.82 mm and with a thickness of 10.61 mm respectively. While in group III were accessions I-08, I-14, I-77 and I-80, this group stood out for presenting a high average in plant height with 2.79 m, secondary branches of 29.50 and flower buds of 185, finally in group IV was accession I-31, which was characterized by presenting a low seed weight per plant (Table 4).

Table 4 Averages of the variation of four groups formed in the cluster analysis of 23 accessions of J. curcas L. 

Variables Group I Group II Group III Group IV
Plant height (m) 2.73 1.99 2.79 2.74
Stem diameter (mm) 65.67 52.77 65.28 65.29
Number of primary branches 4.47 3.00 5.00 5.00
Number of secondary branches 27.93 14.00 29.50 25.00
Leaf length (cm) 14.01 13.28 13.75 13.74
Leaf width (cm) 14.74 14.76 14.07 14.48
Number of flower buds 161.63 13.28 185.05 185.4
Number of clusters 114.18 39.5 76.9 68.2
Number of fruits 380.83 142.5 222.97 190.2
Fruit length (mm) 30.21 28.6 29.58 30.8
Fruit width (mm) 23.26 21.58 21.81 23.41
Number of seeds per fruit 3.00 2.00 2.00 2.00
Fruit color 5.00 4.00 5.00 5.00
Seed weight (g) 0.76 0.84 0.75 0.72
Seed length (mm) 18.66 19.82 18.48 18.09
Seed width (mm) 10.39 10.61 10.06 10.00
Seed thickness (mm) 8.81 9.15 8.9 8.94
Seed weight (g) 368.15 183.5 171.16 70.84

Authors such as Machado (2011), in one morphological characterization of accessions of different provenances of J. curcas, in Cuba, propagated by seed, found significant differences in morphological characteristics of height, number of primary, secondary and tertiary branches. Steinmann (2002) states that propagation by seed has greater production and tolerance to pests and diseases. In this regard, it is recognized that their populations present a great variability in their morphological structures (Toral et al., 2008), which could be a limitation for their domestication.

Investigations such as those of Henning (2004); Achten et al. (2008) mention that flower biology and heterogeneity in production cycles are characteristics that need to be improved to make a commercial crop possible, but it still lacks information on growing conditions, input response capacity of production and seed yield. Francis et al. (2005) mention that plant yield will depend on the conditions of the growing area, as well as genetics, plant age and management. Soil analysis. The type of soil is loamy-clayey (García, 1988) with a pH that tends to be moderately acidic. The pH obtained was within the acceptable parameter for J. curcas, since it can be sown in marginal soils with a pH of 6 to 8 (Kumar and Sharma, 2008).

The soil used to propagate the seed had a high concentration of nitrogen (N), a component required at a high concentration (Achten et al., 2008). Regarding the presence of phosphorus (P), this was independent of the depth at which the samples were taken. The amount of potassium (K) was higher in the sample taken at a shallower depth (20 mg/L), and important to increase the size of grains and seeds and the displacement of starch, sugar and oil.

Regarding organic matter, this was 6.28% in the sample taken from 0-20 cm. The texture was loamy-clayey and clay. This is contrary to studies indicating that J. curcas develops better in sandy or gravel soils with good aeration and does not tolerate flooded soils (Noda-Leyva et al., 2015).

Conclusions

The use of morphological and productive descriptors allowed identifying outstanding accessions in the plants of the 23 accessions of non-toxic Jatropha curcas L.; based on 18 variables. The accessions I-34, I-32 and I-47 were the most outstanding, with respect to a greater production in seed, number of flower buds, clusters and fruits, being the variables of greatest interest, coming in the same order from the regions of Capital, Nautla and Olmeca. The plants had a greater development in terms of height, number of primary branches, secondary branches, number of flower buds, fruits and seed production. These descriptors are important for the characterization of outstanding germplasm of J. curcas to be included in a genetic improvement program.

Literatura citada

Achten, W. M. J.; Verchot, J.; Franken, Y. J.; Mathijs, E.; Singh, V.; Aerts, R.; and Muys, B. 2008. Jatropha bio-diesel production and use. Biomass and Bioenergy. 32 (12):1063-1084 https://doi.org/10.1016/j.biombioe.2008.03.003. [ Links ]

Balota, E. L.; MachineskI, O.; Truber, P. V.; Scherer, A. and Souza, F. S. 2011. Physic nut plants present high mycorrhizal dependency under conditions of low phosphate availability. Braz. J. Plant Physiol. 23(1):33-44. https://doi.org/10.1590/S1677-04202011000100006. [ Links ]

Basha, S. D. and Sujatha, D. 2007. Inter and intra-population variability of Jatropha curcas L., characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica. 375-386 https://doi.org/10.1007/s10681-007-9387-5 [ Links ]

Francis, G.; Edinger, R. and Becker, K. 2005. A concept for simultaneous wasteland reclamation, fuel production and socio-economic development in degraded areas in India; Need, potential and perspectives of Jatropha plantations. In Natural Resources Forum. 29(1):12-24. https://doi.org/10.1111/j.1477-8947.2005.00109.x. [ Links ]

García, E. 1988. Modificaciones al sistema de clasificación climática de Köppen para adaptarlo a las condiciones de la República Mexicana 4a Ed. Offset Larios, México. 246 p. [ Links ]

Guerrero, P. J. A.; Campuzano, L. F.; Rojas, S. y Pachon, G. J. 2011. Caracterización Morfológica y Agronómica de la Colección Nacional de Germoplasma de Jatropha curcas L. Orinoquia. 15(2):131-147. http://www.scielo.org.co/scielo.php?script=sci-arttext&pid=S0121-37092 011000200002. [ Links ]

Henning, R. K. 2004. The Jatropha system. In an integrated approach of rural development by utilization of Jatropha curcas L. (JCL). Calameo, Weissensberg, Germany. 105 p. https://www.calameo.com/read/0013656329b4f85182a36.. [ Links ]

Kumar, A. and Sharma, S. 2008. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.); a review, industrial Crops and Products. 28(1):1-10. http://dx.doi.org/10.1016/j.indcrop.2008.01.001. [ Links ]

Laviola, B. G.; Bhering, L. L.; Albrecht, J. C.; Marques, S. S. and Rosado, L. T. B. 2009. Caracterizacão morfo-agronômica do banco de germoplasma de pinhao manso. Uberlândia. 17(3):371-389. https://docs.bvsalud.org/biblioref/2018/09/911806/caracterizacao-morfo-agronomica-do-banco-de-germoplasma-de-pinh-6DevF5M.pdf. [ Links ]

Mabberley, J. D. 2005. The plant book, a portable dictionary of vascular plants. Cambridge University Press. 858 p. [ Links ]

Machado, R. y Suárez, J. 2009. Comportamiento de tres procedencias de Jatropha curcas en el banco de germoplasma de la EEPF “Indio Hatuey”. Pastos y Forrajes. 32(1):29-37. http://www.redalyc.org/articulo.oa?id=269119696003. [ Links ]

Machado, R. 2011. Caracterización morfológica y productiva de procedencias de Jatropha curcas L., Cuba. Pastos y Forrajes. 34(3):267-280. http://www.redalyc.org/articulo.oa?id= 269121083003. [ Links ]

Makkar, H. P. S.; Francis, G. and Becker, K. 2007. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal. 1(9):1371-1391. https://doi.org/10.1017/S175173110700029. [ Links ]

Manurung, R. 2007. Valorization of Jatropha curcas using the biorefinery concept. Expert seminar on Jatropha curcas L. agronomy and genetics. FACT Foundation. Wageningen, The Netherlands. 28 p. [ Links ]

Martínez, H. J.; Martínez, A. A. L.; Makkar, H.; Francis, G. and Becker, K. 2010. Agroclimatic conditions, chemicals, and nutritional characterization of different provenances of Jatropha curcas L., from México. Eur. J. Sci. Res. 39(3):396-407. https://ipn.elsevierpure.com/en/ publications/agroclimatic-conditions-chemical-and-nutritional-characterization. [ Links ]

Mujemdar, A. y Misar, A. 2004. Anti-inflammatory activity of Jatropha curcas roots in mice and rats. J. Ethnopharmacology. 90(1):11-15. https://doi.org/10.1016/j.jep. 2003.09.019. [ Links ]

Noda-Leyva, Y.; Pérez-Vázquez, A. y Valdés-Rodríguez, O. 2015. Establecimiento de tres especices de oleginosas bajo asociación. Agron. Mesoam. 26(2):232-332. http://dx.doi.org/10.15517/am.v26i2.19326. [ Links ]

Nwosu, M. O. and Okafor, J. I. 2007. Preliminary studies of the antifungal activities of some medicinal plants against Basidiobulus and some other pathogenic fungi. Myocoses. 38:191-195. https://doi.org/10.1111/j.1439-0507.1995.tb00048.x. [ Links ]

Oliveira, Y. X.; Hernández L. X.; Cruz, D. R.; Ramírez, W. X. y Lezcano, J. C. 2009. Nota técnica. Caracterización morfobotánica de tres especies cespitosas. Estación Experimental de Pastos y ForrajesCuba. 32(2):1-8. https://www.redalyc.org/articulo.oa?id=269119694002Links ]

Pérez-Vázquez, A.; Hernández-Salinas, G.; Ávila-Reséndiz, C.; Valdés-Rodríguez, O. A.; Gallardo-López, F.; García-Pérez, E. and Ruíz-Rosado, O. 2013. Effect of the soil water content on Jatropha seedlings in a tropical climate. International Agrophysics. 27(3):351-357. https://doi.org/10.2478/intag-2013-0004. [ Links ]

Rajagopal, R. 2008. Best practices for long-term Jatropha development. KnowGenix, Mumbai, India. 1-14 pp. https://www.calameo.com/read/00142415509223d76765dLinks ]

Rohlf, F. J. 2009. NTSYSpc: numerical taxonomy system, version 2.21. Exeter Software, New York. 43 p. https://www.researchgate.net/publication/246982444-NTSYS-pc---Numerical-Taxonomy-and-Multivariate-Analysis-System. [ Links ]

SAGARPA-SNICS. 2014. Secretaría de Agricultura Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA)-Servicio Nacional de Inspección y Certificación de Semillas (SNICS). Guía técnica para la descripción varietal. 22 p. https://www.gob.mx/snics/ acciones-y-programas/guias-tecnicas-para-la-descripcion-varietal-238911. [ Links ]

Srivastava, P.; Behera, K. S.; Gupta, J.; Jamil, S.; Singh, N. and Sharma, Y. K. 2011. Growth performance, variability in yield traits and oil content of selected accessions of Jatropha curcas L. growing in a large-scale plantation site. Biomass and Bioenergy. 35(9):3936-3942. https://doi.org/10.1016/j.biombioe.2011.06.008 [ Links ]

Sosa-Segura M. P.; Angulo-Escalante, M. A.; Valdez-Torres, J. B.; Heredia, J. B.; Osuna-Enciso, T.; Allende-Molar, R. and Oomah, B. D. 2012. Phenology, productivity, and chemical characterization of Jatropha curcas L., as tool for selecting non-toxic elite germplasm. Afr. J. Biotechnol. 11(93):15988-15993. Doi:10.5897/AJB12.2556. [ Links ]

Steinmann, V. W. 2002. Diversidad y endemismo de la familia Euphorbiaceae en México. Acta Bot. Mex. 61:61-93. https://www.redalyc.org/pdf/574/57406107.pdfTA [ Links ]

Toral, O. C.; Iglesias, J. M.; Montes, S. O.; Sotolongo, J. A.; García. S. y Torsti, M. 2008. Jatropha curcas L., una especie arbórea con potencial energético en Cuba. Pastos y forrajes. 31 (3):91-207. https://www.redalyc.org/pdf/2691/269119697001.pdf. [ Links ]

Trabucco, A.; Achten, W. M. J.; Bowe, C.; Aerts, R.; Van Orshoven, J.; Norgroves, L. and Muys, B. 2010. Global mapping of Jatropha curcas Yield based on response of fitness to and future climate. Global Change Biology Bioenergy. 2(3):139-151. https://doi.org/10.1111/j.1757-1707.2010.01049.x. [ Links ]

Valdés-Rodríguez , O. A.; Sánchez- Sánchez, O.; Pérez-Vázquez , A. y Zavala, I. 2013. Alelometría de semillas de Jatropha curcas L., mexicanas. Rev. Mex. Cienc. Agríc. 4(5):967-978 https://www.scielo.org.mx/scielo.php?script=sci-arttext&pid=S2007-09342013000900009.. [ Links ]

Valdés-Rodríguez, O. A.; Gómez-Zúñiga, I.; Palacios-Wassenaa, O. M.; Sol-Quintas, G. and Pérez-Vázquez, A. 2020. Effect of pruning and organic fertilization over productive parameters of four Mexican provenances of Jatropha curcas L. Emir. J. Food Agric. 32(8):567-576. Doi: https://doi.org/10.9755/ejfa.2020.v32.i8.2133. [ Links ]

Valdés-Rodríguez, O. A.; Pérez-Vázquez, A.; Palacios-Wassenaar, O. and Sánchez-Sánchez, O. 2018. Seed diversity in native Mexican Jatropha curcas L. and their environmental conditions. Trop. Subtrop. Agroecoystems. 21(3):521-537. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/download/2528/1194. [ Links ]

Wencomo-Cárdenas, H. B.; Pérez-Vázquez, A.; García-Pérez, E. y Valdés-Rodríguez, O. A. 2020. Caracterización morfoagronómica de accesiones no tóxicas de Jatropha curcas L. Pastos y Forrajes. 43(3):236-245. https://www.redalyc.org/journal/2691/269165823009/movil/. [ Links ]

Zavala, I.; García-Pérez, E.; Hernández, D.; Pérez-Vázquez, A. and Ávila, C. 2016. Genetic diversity of Jatropha curcas L. in Veracruz state, México, and its relationships with content of phorbol esters. Global Adv. Res. J. Agric. Sci. 5(5):49-158. http://www.colpos.mx/wb-pdf/Veracruz/2016/2016-%2026.pdf. [ Links ]

Received: February 01, 2023; Accepted: April 01, 2023

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons