SciELO - Scientific Electronic Library Online

 
vol.13 issue8New haplotypes of Diaphorina citri, vector of Candidatus Liberibacter in citrus areas of Mexico author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ciencias agrícolas

Print version ISSN 2007-0934

Rev. Mex. Cienc. Agríc vol.13 n.8 Texcoco Nov./Dec. 2022  Epub June 19, 2023

https://doi.org/10.29312/remexca.v13i8.2647 

Articles

Agronomic characterization of Salvia hispanica L. germplasm

Andrés Xingú-López1 

Andrés González-Huerta2 

Eulogio de la Cruz-Torres3 

Dora Ma. Sangerman-Jarquín4 

Salvador Montes-Hernandez5 

Martín Rubí-Arriaga2  § 

1Programa de Doctorado en Ciencias Agropecuarias y Recursos Naturales-Facultad de Ciencias Agrícolas-Universidad Autónoma del Estado de México. El Cerrillo, Piedras Blancas, Toluca, México. CP. 50200. (andrésxl2000@yahoo.com.mx).

2Facultad de Ciencias Agrícolas-Universidad Autónoma del Estado de México. El Cerrillo, Piedras Blancas, Toluca, México. CP. 50200. (agonzalezh@uaemex.mx).

3Departamento de Biología-Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, México. CP. 52750. (eulogio.delacruz@inin.gob.mx).

4Campo Experimental Valle de México-INIFAP. Carretera Los Reyes-Texcoco km 13.5, Coatlinchán, Texcoco, Estado de México. CP. 56250. Tel. 55 38718700, ext. 85353. (sangerman.dora@inifap.gob.mx).

5Campo Experimental Bajío-INIFAP. Carretera Celaya-San Miguel de Allende km 6.5, Celaya, Guanajuato, México. CP. 38110. (montes.salvador@inifap.gob.mx).


Abstract

Salvia hispanica L. (chia) is an herbaceous plant native to Mexico, belongs to the Lamiaceae family. The crop was banned and replaced by other cereals during the Conquest. Due to the nutritional content and nutraceutical properties it possesses, it has been reintroduced and is currently considered a highly nutritious potential food. The area sown is increased annually, the cultivated materials are usually local or introduced genotypes, because there are few improved varieties. With the aim of identifying outstanding accessions, oriented to greater efficiency of the crop, during the 2017 spring-summer agricultural cycle, 32 accessions of S. hispanica were agronomically characterized, in seven environments, under a design of randomized complete blocks with three repetitions. The following variables were evaluated: plant height, stem diameter, plant weight, number of spikes, grain weight per plant and yield per hectare. Accessions 1, 2, 12 and 22 had higher seed yield per ha, plant height, number of flower spikes, fruits per spike and dry plant weight. The average seed production was 924 kg ha-1. The best environment for chia production was Rancho San Lorenzo, Metepec. The cluster analysis grouped the accessions into five clusters, grouping them by their yield and related variables.

Keywords: agronomic variables; chia; genetic variability

Resumen

La Salvia hispanica L. (chía) es una planta herbácea originaria de México, pertenece a la familia Lamiaceae. El cultivo fue prohibido y sustituido por otros cereales durante la conquista. Por el contenido nutricional y propiedades nutraceúticas que posee, se ha reintroducido y actualmente se considera un alimento potencial altamente nutritivo. La superficie sembrada se incremente anualmente, los materiales cultivados son genotipos locales o introducidos, debido que son escasas las variedades mejoradas. Con el objetivo de identificar accesiones sobresalientes, orientadas a una mayor eficiencia del cultivo, durante el ciclo agrícola primavera-verano 2017, se caracterizaron agronómicamente 32 accesiones de S. hispanica, en siete ambientes, bajo un diseño de bloques completos al azar con tres repeticiones. Se evaluaron las variables: altura de planta, diámetro de tallo, peso de planta, número de espigas, peso de grano por planta y rendimiento por hectárea. Las accesiones 1, 2, 12 y 22 presentaron mayor rendimiento de semilla por hectárea, altura de planta, número de espigas florales, frutos por espiga y peso seco de planta. El promedio de producción de semilla fue de 924 kg ha-1. El mejor ambiente para producción de chía fue Rancho San Lorenzo, Metepec. El análisis clúster agrupo a las accesiones en cinco conglomerados, agrupándolos por su rendimiento y variables afines.

Palabras clave: chía; variabilidad genética; variables agronómicas

Introduction

Salvia hispanica L. is an herbaceous plant of the Lamiaceae family, native to the mountainous areas of southwestern Mexico, Guatemala, and Nicaragua (Lobo et al., 2011). The basis of the diet of the Indigenous peoples of Mexico, it was one of the four main crops of the Aztecs, surpassed only by corn (Zea mays L.), beans (Phaseolus vulgaris L.) and chili (Capsicum annuum L.). During the conquest of New Spain, its production decreased until almost disappearing, due to the reduction of the pre-Hispanic population and the implementation of cereal cultivation (Xingú et al., 2017).

In recent decades it has resurfaced, the nutraceutical properties and its attractive nutritional benefits have expanded its consumption (Xingú et al., 2017), it has oil with 68% of α-linolenic acid, the most important of the omega-3 fatty acids for human consumption, which makes it the richest vegetable source in antioxidants (Orona-Tamayo et al., 2017), vitamins B1, B2 and B3 (Jamshidi et al., 2019), fiber, proteins and minerals such as phosphorus, calcium, potassium, magnesium, iron, zinc and sodium (Michajluk et al., 2018).

In addition, it has medicinal properties (Deka and Das, 2017), has beneficial effects for the treatment of metabolic syndrome (Lombardo and Chicco, 2017), regulates blood glucose and promotes blood clotting (Nieman et al., 2012), decreases bad cholesterol and triglycerides, and improves intestinal function (Sandoval-Oliveros and Paredes-López, 2013). The global demand for chia began in the nineties, it is currently grown in Argentina, Bolivia, Paraguay, Australia and Mexico mainly (Busilacchi et al., 2015), where its consumption increases day by day, being exported to Peru, the United States of America, Chile, Germany, the Netherlands, the United Kingdom, Denmark, Japan, Canada, New Zealand, Singapore and South Africa (Suárez, 2018).

In Mexico, the commercial production of this species takes place in eight states. Although during the 2006-2009 period, the area sown with chia was less than 50 ha, by 2010 it increased to 2 300 ha, a figure that increased constantly until the 2013 cultivation cycle, which exceeded 18 000 ha. However, from 2014, it registered a decreasing trend and during the 2017 spring-summer cycle, it was grown only on 5 400 ha with a production of 3 200 tons (SIAP, 2019). Reduction due to factors such as: lack of experience on the cultivation, ignorance of nutritional properties and limited information on improved varieties (Sosa-Baldivia and Ruiz-Ibarra, 2016).

The state of Jalisco is the largest producer, concentrating more than 65% of the cultivated area which contributes a volume of more than 2 000 tons, equivalent to 63% of production (SIAP, 2019). Chia cultivation is mostly based on regional genotypes. Although germplasm banks have been established in institutions such as the Chapingo Autonomous University (UACH, for its acronym in Spanish), the National Institute of Nuclear Research (ININ, for its acronym in Spanish), the Institute of Agricultural, Aquaculture and Forestry Research and Training of the State of Mexico (ICAMEX, for its acronym in Spanish), the collection of accessions of the company Chíablanca SC de RL located in Acatic, Jalisco stands out, which concentrates collections from the different producing areas.

Information on the characterization of materials of this species is scarce, wild, semi-domesticated and domesticated populations have been typified (Calderón-Ruiz et al., 2021). Hernández and Miranda (2008) studied three ecotypes of cultivated chia, finding similarity in seed size and inflorescence density, but with differences in biological cycle, length and width of corolla, width of inflorescence and height of plant, and they concluded that among the morphological structures that differentiate cultivated S. hispanica from the wild are: flower size, density of whorls in the inflorescence, seed weight and duration of the biological cycle.

Studies carried out by Sosa-Baldivia et al. (2017) report potential yields of 1 723 kg ha-1, which they relate to the number of plants per m2, plant height and main inflorescence length, while Grimes et al. (2018) reported a production of 1 274.7 kg ha-1 of the Sahi Alba 914 variety. Yields are related to a higher number of branches plant-1 and inflorescences plant-1 (Pereira et al., 2020). Currently, studies have focused on demonstrating the properties as a functional food (Grancieri et al., 2019) but the work of describing the available materials of this species has been insufficient, so the present research arose with the aim of agronomically characterizing chia accessions from the main producing regions of Mexico.

Materials and methods

Genetic material

Two hundred fifty grams of seeds were obtained from each of the 32 chia accessions (Table 1), two were donated by the Institute of Agricultural, Aquaculture and Forestry Research and Training of the State of Mexico (ICAMEX, for its acronym in Spanish), six by the germplasm bank of the Chapingo Autonomous University (UACH, for its acronym in Spanish), 13 by the company Chíablanca, SC de RL (located in Acatic, Jalisco) and 11 provided by the National Institute of Nuclear Research (ININ, for its acronym in Spanish).

Table 1 Accessions of Salvia hispanica L. 

Number Genealogy Seed color Institution
1 CHGRD Black ICAMEX
2 CHCRI Black ICAMEX
3 ININ1 Black ININ
4 ININ2 Marbled Grey ININ
5 ININ3 White ININ
6 ININ4 Black ININ
7 ININ5 Black ININ
8 ININ6 Black ININ
9 ININ7 Marbled Grey ININ
10 ININ8 White ININ
11 ININ9 Marbled Grey ININ
12 ININ10 White ININ
13 ININ11 Black ININ
14 17Pz White Chíablanca SC de RL
15 83FB5B White Chíablanca SC de RL
16 59 Normal Black Chíablanca SC de RL
17 66 Brown Grain Brown Chíablanca SC de RL
18 122 Az Black Chíablanca SC de RL
19 64 Black Chíablanca SC de RL
20 SLVTTLA Black Chíablanca SC de RL
21 B54 White Chíablanca SC de RL
22 CRIPINA Mottled Chíablanca SC de RL
23 680 Black Chíablanca SC de RL
24 346 Black Chíablanca SC de RL
25 30Pz White Chíablanca SC de RL
26 P75ZN Marbled Grey Chíablanca SC de RL
27 CNPGA Black Chapingo germplasm bank
28 CNPGB Black Chapingo germplasm bank
29 CPJGA Marbled Grey Chapingo germplasm bank
30 CPJGB Marbled Grey Chapingo germplasm bank
31 CBJGA White Chapingo germplasm bank
32 CBJGB White Chapingo germplasm bank

Evaluation localities

The crops were established in the 2017 spring-summer agricultural cycle in the localities whose characteristics are shown in Table 2.

Table 2 Characteristics of the localities where the crop of chia was established. 

Characteristic CPB RSL SFT XAL SJX
North latitude 19°24’49” 19°14’40” 19°18’17” 19°10’51” 19°00’50”
West latitude 99°41’29” 99°35’36” 99°46’29” 99°25’41” 99°31’52”
Altitude (m) 2 640 2 606 2 750 2 770 2 330
Climate C(w2)(w)ig C(w2)(w)ig C(w2)(w)ig Cwb C(w2)(w)ig
Soil Vertisol Phaeozem Vertisol Andosol Andosol
Average annual rainfall (mm) 790 980 777 1 069 1 000
Landform Plain Plain Plain Mountain Mountain

CPB= El Cerrillo Piedras Blancas (municipality of Toluca); RSL= Rancho San Lorenzo (Metepec); SFT= San Francisco Tlalcilalcalpan (Almoloya de Juárez); XAL= Xalatlaco (Xalatlaco); SJX= San Juan Xochiaca (Tenancingo).

Experimental design and unit

An experimental design of randomized complete blocks with three repetitions per environment was used. The plot consisted of three furrows of 4.5 x 0.8 m, each furrow with 90 plants at a distance of 0.05 m. The central furrow was the useful experimental unit.

Establishment and conduct of the experiment

The preparation of the soil consisted of fallow, two passes of harrowing and furrowing. The sowing was carried out manually by steady flow on the ridge of the furrow in May 2017. Subsequently, a thinning was carried out to adjust the required density. Between 30 and 45 days after the emergence of the seedlings, weed control was performed manually.

Variables evaluated

Ten plants were selected from each experimental unit and the following variables were evaluated: plant height (from the base of the stem to the apex of the main spike, recorded in cm), diameter of the base of the stem (mm), dry weight of mature plant (grams), number of fruits per floret in the main spike, main spike length (cm), main spike length from node (cm), number of lateral branches, number of total flower spikes per plant, harvest index (ratio between seed weight and total weight of unthreshed plant) and yield in kg (plants contained in one linear meter).

Data analysis

In the statistical package SAS version 6.01, the following analyses were carried out: variance (individual and combined), comparison of means between sites and between cultivars (individual and combined). The 14 interrelationships between cultivars and between variables were determined by a principal components analysis (Sánchez, 1995).

Results and discussion

Significance (p≤ 0.01) was obtained between environments (E), between chia accessions (C) and in the interaction of accessions (C) by environments (E) for dry weight of plant, stem diameter, plant height, number of fruits per spike, spike length, spike length from node, number of branches per plant, number of spikes per plant, grain weight per plant, harvest index and yield in kg ha-1 (Table 3).

Table 3 Mean, coefficient of variation, mean squares and statistical significance of the F values of the combined analysis of variance (seven environments) of 11 variables. Toluca Valley, 2017. 

SV DF PSP DT AP NFE LE LEN NRP NEP PGP IC R
Environment (E) 6 1147.48** 82.53** 616.49** 76.61** 64.65** 160.54** 500.47** 391.51** 392.44** 106.72** 369.93**
Repetitions/E 14 0.13 0.01 0.13 0.01 0.06 0.05 0.14 0.09 0.37 0.04 0.36
Accession (C) 31 8.56** 8.4** 18.9** 8.54** 8.39** 17.2** 12.96** 13.5** 19.6** 13.1** 20**
C*E 186 8.19** 6.01** 7.41** 4.02** 2.67** 4.25** 5.22** 5.38** 7.35** 4.02** 7.27**
Error 434 81.81 8.37 61.11 14.05 31.94 2.84 2.09 108.11 4.224 14.43 108 381
Mean 37.87 8.88 90.61 12.79 28.13 15.59 16.63 41.64 5.66 18.11 924.29
CV (%) 23.88 32.56 8.63 29.28 20.09 10.81 8.68 24.97 36.287 20.98 35.61

PSP= dry plant weight; DT= stem diameter; AP= plant height; NFE= number of fruits per floret of main spike; LE= spike length; LEN= spike length from node; NRP= number of branches per plant; NEP= number of spikes per plant; PGP= grain weight per plant; IC= harvest index; R= yield.

Table 4 shows that, although RSL surpassed the rest of the localities in plant height, RSL1 showed the highest dry weight per plant, grain weight per plant and yield. RSL, RSL1, SFT and XAL have statistical similarity in spike length from node and number of fruits per spike. RSL, RSL1 and SFT surpass the rest of the localities in number of spikes per plant. RSL and RSL1 have greater spike length and number of branches per plant. This allowed establishing that the best behavior occurred in the RSL and RSL1 localities, which profiles this site as a potential area to promote the development of the crop of chia. The differences in the productive parameters of the crop of chia in the evaluated localities can be attributed to the fact that the conditions of each locality can influence the development and production of the collections (Durán et al., 2016), although the genotype effect is the most marked (Busilacchi et al., 2013).

Table 4 Comparison of means among localities (Tukey p≤ 0.01). 

Environment PSP DT AP NFE LE LEN NRP NEP PGP IC R
CPB 7.606f 8.45c 62.72f 8.71b 22.476 d 12.48c 12.49d 21.03c 1.572 d 20.71b 374.73de
CPB1 9.281f 7.61cd 69.66e 9.59b 25.04cd 13.82b 13.8c 22.33c 1.98d 22.88a 316.35f
RSL 55.05c 11.93b 111.5a 15.79a 33.97a 17.16a 20.28a 63.17a 8.324 b 15.13d 1 333.35b
RSL1 86.42a 7.45cd 106.8b 15.74a 33.75a 17.16a 20.35a 63.16a 13.02a 15.33d 2 083.11a
SFT 66.56b 13.4a 109.24ab 15.44a 30.72b 17.1a 18.2b 64.38a 7.54b 12.68e 1 206.88b
XAL 23.75d 6.83d 92.97c 14.88a 26.14c 17.78a 17.75b 34.59b 3.89c 17.46c 623.29c
SJX 16.44e 6.55d 81.338d 9.439b 24.81cd 13.66b 13.58c 22.83c 3.32c 22.6ab 532.37cd

PSP= dry plant weight; DT= stem diameter; AP= plant height; NFE= number of fruits per floret of main spike; LE= spike length; LEN= spike length from node; NRP= number of branches per plant; NEP= number of spikes per plant; PGP= grain weight per plant; IC= harvest index; R= yield; CPB= Cerrillo Piedras Blancas, CPB1= Cerrillo Piedras Blancas 1; RSL= Rancho San Lorenzo; RSL1= Rancho San Lorenzo 1; SFT= San Francisco Tlalcilalcalpan; XAL= Xalatlaco; SJX= San Juan Xochiaca.

In relation to accessions, in Table 5, selections 1 (black seeds) and 12 (white seed) stand out in grain weight per plant and yield (exceeding 1 400 kg ha-1), the weight of seed influences the yield, the marbled gray and white seeds are the heaviest compared to those of uniform brown color (Rovati et al., 2012). Materials 19 and 23 showed seed weight per plant and yields of less than 50 kg ha-1, genotypes affected by frosts in full flowering, it would be convenient to evaluate them in areas with less risk of frosts or modify the sowing season because the plant is sensitive to low temperatures (González, 2016).

Table 5 Means of agronomic variables of chia grown in seven environments. 

A PSP DT AP NFE LE LEN NR NEP PGP IC R
1 48.68ab 8.56de 100.26a-d 12.15bc 31.75bc 15.25d-i 14.55i 46.34a-h 8.66a 18.52b-g 1 403.8a
2 45.62a-d 8.95cde 102.319abc 11.66bc 29.88nc 17.22a-d 16.56b-h 53.28ab 6.41a-d 16.49e-h 1 043.2a-d
3 42.56a-d 8.24ed 103.84ab 10.74bc 28.55bcd 15.89b-g 18.07ab 48.79a-f 5.95cd 17.3c-g 972.4bcd
4 35.863c-h 7.53e 94.86b-i 20.26a 42.07a 12.886jk 18.05ab 33.96g-l 6.67a-d 19.97b-e 1 087.5a-d
5 35.17c-h 8.55ed 92.05d-j 11.61bc 34.25b 14.31h-k 17.43a-f 32.84h-l 6.37a-d 18.51b-g 1 037.9a-d
6 36.897b-h 12.58abc 99.27a-f 14.14b 30.76bc 14.46h-k 16.24b-i 37.13d-l 6.99a-d 20.01b-e 1 141.1a-d
7 36.633d-h 13.46ab 105.38a 12.54bc 28.75bcd 15.45c-h 17.73a-d 33.66g-l 6.54a-d 19.94c-e 1 071.2a-d
8 44.828a-d 11.53a-d 101.97a-d 14.48b 26.72cd 16.38b-f 18.66a 42.45b-k 7.19abc 17.84b-g 1 175.6abc
9 34.929d-h 13.93a 91.2e-k 13.45b 26.16cd 16.73a-e 16.96a-g 26.86 5.23cde 18.36b-g 854cde
10 30.082gh 7.45e 86.61i-k 14.71b 26.61cd 16.98a-d 16.46b-h 28.91 kl 4.86cde 19.98b-e 797.7cde
11 40.091a-g 8.86cde 93.05c-i 20.21a 30.56bc 18.72a 16.43b-i 42.77a-j 6.65a-d 20.4a-e 1 091.9a-d
12 47.378abc 8.92cde 93.25c-g 13.29bc 28.22bcd 15.22d-i 16.48b-h 49.79a-d 8.9a 19.46b-f 1 444.7a
13 38.939a-g 7.98de 97.89a-g 11.211bc 26.44cd 15.87c-g 17.59a-f 40.49b-l 4.73cde 16.086e-i 777.9cde
14 31.273e-h 7.23e 85.76i-l 12.96bc 27.95bcd 16.32b-f 15.97d-i 35.8e-l 6.53a-d 22.58ab 1 064.9a-d
15 26.496h 7.18e 81.18kl 13.14bc 29.38bc 16.26b-f 15.82e-i 29.41jkl 6.2a-d 25.37a 1 014.7a-d
16 34.056d-h 7.82de 80.69l 13.22bc 29.65bc 17.88ab 14.89hi 55.31a 6.39a-d 18.61b-g 1 039a-d
17 37.185b-h 8.61de 85.29i-l 13.43b 29.65bc 15.29d-i 15.74ghi 53.39ab 3.06ef 11.35i 502.3ef
18 38.931a-g 9.04cde 89.03f-l 11.99bc 28.09bcd 14.53e-k 17.61a-f 49.07a-e 1.85fg 11.571hi 306.5fg
19 41.537a-g 9.98b-e 91.38e-k 10.29bc 21.66d 14.32f-k 18.55a 30.96i-l 0.11g 14.6f-i 20.8g
20 38.722a-g 7.5e 91.38i-l 12.25bc 26.71cd 17.59abc 16.45b-h 43.69a-i 6.18bcd 19.37b-f 1 006.6bcd
21 41.892a-g 7.59e 91.38jkl 14.56b 27.12bcd 17.55abc 16.11c-i 51.48abc 6.45a-d 21.69abc 1 053.4a-d
22 49.767a 9.37cde 91.38e-l 12.48bc 26.2cd 15.33d-i 16.87a-g 51.74abc 6.35a-d 16.26e-i 1 027.2a-d
23 42.181a-f 9.03cde 91.38a-g 8.51c 21.83d 12.77k 17.65a-e 36.52d-l 0.12g 14.61f-i 45.7g
24 42.498a-e 8.2de 91.38c-i 10.08bc 25.69cd 13.19ijk 17.94abc 52.09abc 6.64a-d 16.6d-g 1 081.1a-d
25 31.057e-h 6.96e 91.38jkl 11.56bc 25.56cd 16.12b-g 15.17gni 35.17f-l 6.12bcd 20.31b-e 1 000.3bcd
26 32.048e-h 7.28e 91.38i-l 11.26bc 28.34bcd 17.78ab 15.16ghi 36.16d-l 4.91de 15.88e-i 800.3de
27 30.354fgh 7.51e 91.38kl 11.38bc 26.87bcd 14g-k 15.27ghi 34.27g-l 4.43d-h 13.96ghi 720.2d-h
28 32.251fgh 8.54e 91.38f-l 12.29bc 26.43cd 15.99b-g 17.35a-f 38.58c-l 6.84a-d 21.58a-d 1 115.8a-d
29 38.889a-g 10.7a-e 91.38g-l 11.26bc 25.15cd 15.8b-g 17.66a-e 47.02a-g 6.12bcd 17.69b-g 991.5bcd
30 34.556d-g 10.63a-e 91.38l 11.65bc 27.21bcd 14.65e-k 16.12c-i 46.24a-h 4.78cde 16.35e-h 781.3cde
31 32.846e-h 7.29e 91.38kl 13.7b 28.91bcd 15.02d-j 14.81hi 38.68c-l 5.62cde 19.28b-f 917.9cde
32 37.695b-h 7.47e 91.38h-l 13.03bc 27.07bcd 13.24h-k 16d-1 49.67a-d 7.31abc 19.03b-f 1 188.7abc

Accessions that exceed yields of 1 000 kg ha-1 of seed also exceed 30 flower spikes, 90 cm in height and 34 g of dry weight of plant, it could be deduced that these variables are closely related to seed yield (Karim et al., 2016).

The dendrogram shows that, at a Euclidean distance of 200, five groups formed (Figure 1). Set 1 was formed by accessions 17 and 18, which presented physiological maturation at 160 days after sowing, unlike those of intermediate cycle which have their production at 150 days. Production is low, 306 kg ha-1 (18) and 502 kg ha-1 (17), but they are within the yields of the national average of 500 kg ha-1 (SIAP, 2019).

Cluster two consisted of accessions 19 and 23, which showed flowering at 160 days, but showed cold damage in the frost season, so their production was minimal, of 20.8 kg ha-1 (19) and 45.7 kg ha-1 (23), this confirms that temperatures below 5 °C affect the crop of chia (Baginsky et al., 2016) and that, in temperate climates, more biomass accumulates and they produce less seed, contrary to when they grow in warm environments, in these conditions they accelerate the reproductive phase and produce more seed (Medina-Santos et al., 2019).

Figure 1 Dendrogram from 12 agronomic variables of 32 chia collections. 

Accessions 15, 20 and 25 form a subgroup of cluster three, which can be considered of early cycle, since their flowering occurred at 90 days and their physiological maturity at 120 days, they share the average presence of 15 branches per plant, this subgroup integrates accessions 29 and 3 of intermediate cycle (150 days), with 16 to 18 branches and 47 to 48 flower spikes per plant. With similar seed production, another subgroup consists of accessions 2 (1 043 kg ha-1), 22 (1 027 kg ha-1), 5 (1 037 kg ha-1), 16 (1 039 kg ha-1) and 21 (1 053 kg ha-1). Accessions 7 and 14 share the same production 1 071 kg ha-1 and 1 064 kg ha-1 respectively, the grain weight per plant 7 (6.54) and 14 (6.52) and number of flower spikes per plant 7 (33) and 14 (35).

Group four was formed by accessions six (1 141 kg ha-1) and 28 (1 115 kg ha-1), which form a subgroup sharing the same grain production and weight per plant, another subgroup is formed by collections 8 and 22 with yields of 1 175 and 1 188 kg ha-1 respectively, as well as the same grain weight per plant. The subgroup formed by accessions 10 and 26 share stem diameter (7.2 mm), spike length from node, seed production per plant and yield. Another subgroup formed by accessions 13 and 30 has the same seed production per plant (4.7 g), yield per hectare of 777-781 kg and number of flowers per floret in spike. Similar yields of the accessions of this group have been obtained in Petacal, Jalisco with local cultivars (Sosa-Baldivia et al., 2017).

Cluster five was integrated by accessions 1 and 12, which were the ones that had the highest seed weight per plant and production, with yields exceeding 1 400 kg of seed per ha. Fruit or seed production and yield are variables that allow determining the ideal genotypes to implement in the search for cultivation areas (Bochicchio et al., 2015).

Principal component analysis

The first four principal components explain 74% of the agronomic variability of 32 accessions of S. hispanica. Sánchez (1995) mentions that this percentage is reliable to properly interpret the correlations that exist between them. The first component with 30.43% was related to yield. The second component with 21.39% was defined by the variable of seed weight per plant, the third principal component 12.25%, defined by the number of spikes per plant, and the fourth component with 10.24 of the variability generated by spike length, they collected the variation not gathered by the first, presenting the highest factorial coefficients.

In principal component analysis, the new factors (or components) are independent of each other, that is, a variable must have high coefficients with only one factor and there should be no factors with similar coefficients (Restrepo et al., 2012). The variables yield, grain weight per plant, number of fruits per spike, number of spikes per plant and spike length have a positive and significant contribution, which allows specifying the contribution of the variables to the principal components and their relationship with the explained variation (Figure 2). The variables studied tend to be grouped, with an acceptable degree of agreement in their location within the quadrants (Olivares and Hernández, 2020).

Figure 2 Multidimensional representation of the two principal components of 32 collections of S. hispanica.  

Conclusions

The characterization showed that there is a wide agronomic variability between the accessions evaluated, the factors yield, number of spikes, seed weight per plant and plant height are variables that allow the best materials to be selected; selections 1, 2, 12 and 22 have outstanding agronomic characteristics, which can be established with potential yields attractive to producers in the study area, sowing in a timely manner when the rainy season begins and thus avoid frost damage or as a basis for developing genetic improvement programs for S. hispanica L.

Acknowledgements

To the Institute of Agricultural, Aquaculture and Forestry Research and Training of the State of Mexico, particularly Eng. Enrique Archundia Garduño, the company Chíablanca (Eng. Guillermo Orozco de Rosas), the National Bank of Plant Germplasm, Mexico, the Chapingo Autonomous University (Dr. Jesús Axayacatl Cuevas Sánchez) and the Institute of Nuclear Research (Dr. Eulogio de la Cruz Torres), for providing their collections.

REFERENCES

Baginsky, C.; Arenas, J.; Escobar, H.; Garrido, M.; Valero, N.; Tello, D.; Pizarro, L.; Valenzuela, A.; Morales, L. and Silva, H. 2016. Growth and yield of chía (Salvia hspanica L.) in the Mediterranean and desert climates of Chile. Chilean J. Agric. Res. 76(3):255-264. http://dx.doi.org/10.4067/S0718-58392016000300001. [ Links ]

Bochicchio, R.; Rossi, R.; Labella, R.; Bitella, G.; Perniola, M. and Amato, M. 2015. Effect of sowing density and nitrogen top-dress fertilization on growth and yield of chía (Salvia hispanica L.) in a Mediterranean environment: firts results. Ital. J. Agron. 10(3):163-166. http://dx.doi.org/10.4081/ija.2015.640. [ Links ]

Busilacchi, H.; Bueno, M.; Severin, C.; Di, S. O.; Quiroga, M. y Flores, V. 2013. Evaluación de Salvia hispanica L. cultivada en el sur de santa Fe (República Argentina). INCA. Cultivos tropicales. 34(4):55-59. [ Links ]

Busilacchi, H.; Qüesta, T. y Zuliani, S. 2015. La chía como una nueva alternativa productiva para la región pampeana. Agromensajes. 41(2):37-46. [ Links ]

Calderón, R. A.; Montes, H. S.; García, P. M. A.; Covarrubias, P. J.; Aguirre, M. C. L. y Raya, P. J. C. 2021. Caracterización de poblaciones de chía silvestre y cultivada. Rev. Mex. Cienc. Agríc. 2(7):1165-1170. https://doi.org/10.29312/remexca.v12i7.2243. [ Links ]

Deka, R. and Das, A. 2017. Advances in chía seed research. Adv biotech & micro. 5(2):1-3. https://doi.org/10.19080/AIBM.2017.05.555662. [ Links ]

Durán, P. N.; Ruiz, J. A. González, D. R.; Mena, M. S. y Orozco, R. G. 2016. Cambio climático y su impacto sobre la aptitud ambiental y distribución geográfica de Salvia hispanica L. En México. Interciencia. 41(6):407-413. [ Links ]

González, B. M. 2016. La chía, alimento alternativo para consumo humano. Rev. Iberoame. Cienc. Biológ. Agropec. 5(9):1-8. [ Links ]

Grancieri, M.; Duarte, H. S. and Gonzalez, M. E. 2019. Seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: a review. Rev Food Sci Food Saf. 18(2):480-499. https://doi.org/10.1111/1541-4337.12423. [ Links ]

Grimes, S. J.; Phillips, T. D.; Hahn, V.; Capezzone, F. and Graeff, H. G. 2018. Growth, yield performance and quality parameters of three early flowering chía (Salvia hispanica L.) genotypes cultivated in southwestern germany. Agriculture. 8(10):1-20. https://doi.org/10.3390/agriculture8100154. [ Links ]

Hernández, J. A. y Miranda, S. 2008. Caracterización morfológica de chía (Salvia hispanica). Rev. Fitotec. Mex. 31(2):105-113. [ Links ]

Jamshidi, A. M.; Amato, M.; Ahmadi, A.; Bochicchio, R. and Rossi, R. 2019. Chía (Salvia hispanica L.) as a novel forage and feed source: A review. Ital. J. Agron. 14(1):1-18. https://doi.org/10.4081/ija.2019.1297. [ Links ]

Karim, M. M.; Ashrafuzzaman, M. and Hossain, M. A. 2016. Effect of planting time on the growth and yield of chia (Salvia hispanica L.). Asian J. Med. Biol. Res. 1(3):502-507. https://doi.org/10.3329/ajmbr.v1i3.26469. [ Links ]

Lobo, Z. R.; Alcocer, M. G.; Fuentes, F. J.; Rodríguez, W. A.; Morandini, M. y Devani, M. R. 2011. Desarrollo del cultivo de chía en Tucumán, República Argentina. EEAOC-avance agroindustrial. 32(4):27-30. [ Links ]

Lombardo, Y. B. y Chicco, A. 2017. Consumo de la semilla de chía (Salvia hispanica L): posibles mecanismos de acción sobre el mejoramiento de la dislipidemia, resistencia insulínica y adiposidad visceral en modelos experimentales y su extensión al humano. FACIBIB. 21(1):85-114. https://doi.org/10.14409/fabicib.v21i0.6869. [ Links ]

Medina, S. L.; Covarrubias, P. J.; Aguirre, M. C. L.; Iturriaga, G. Ramírez, P. J. G. y Raya, P. J. 2019. Caracterización de colectas de chía de la región occidental de México. Rev. Mex. Cienc. Agríc. 10(8):1837-1848. https://doi.org/10.29312/remexca.v10i8.1955. [ Links ]

Michajluk, B. J.; Piris, P. A.; Mereles, L. G.; Wiszovaty, L. N. y Caballero, S. B. 2018. Semillas de Salvia hispanica L., ‘chía’ como fuente de macronutrientes, fibra alimentaria y minerales. Investig. Agrar. 20(1):74-77. https://doi.org/10.18004/investig.agrar.2018.junio.74-77%20%20. [ Links ]

Nieman, D. C.; Gillitt, N.; Jin, F.; Henson, D. A.; Kennerly, K.; Shanely, R. A.; Ore, B.; Su, M. and Schwartz, S. 2012. Chia seed supplementation and disease risk factors in overweight woman: A metabolomics investigation. The journal of alternative and complementary medicine. 18(7):700-708. [ Links ]

Olivares, B. O. y Hernández, R. A. 2020. Aplicación de técnicas multivariantes en la aptitud de las tierras agrícolas en Carabobo, Venezuela. Tropical and subtropical agroecosystems. 23(2):1-12. [ Links ]

Orona, T. D. L.; Valverde, E. M. and Paredes, L. O. 2017. Chia-the new golden seed for the 21st century: nutraceutical properties and technological uses. In: sustainable protein sources. Chapter 17. Elsevier. 265-281 pp. https://doi.org/10.1016/B978-0-12-802778-3.00017-2. [ Links ]

Pereira, D.; Schuelter, A. R.; Dembocurski, D.; Passos, F. R.; Maestre, K. L.; Silva, E. A. and Klen, M. R. 2020. Yield components and chemical composition of grains from Salvia hispanica L. genotypes cultivated in western paraná under different population densities. Research, society and development. 9(12):1-20. http://dx.doi.org/10.33448/rsd-v9i12.10798. [ Links ]

Restrepo, L. F.; Posada, S. L. y Noguera, R. R. 2012. Aplicación del análisis por componentes principales en la evaluación de tres variedades de pasto. Rev. Colom. Cienc. Pecua. 25(2):258-266. [ Links ]

Rovati, A.; Escobar, E. y Prado, C. 2012. Particularidades de la semilla de chía (Salvia hispanica L.). EEAOC-avance agroindustrial . 33(3):40-43. [ Links ]

Sánchez, J. J. 1995. El análisis biplot en clasificación. Rev. Fitotec. Mex. 18(2):188-203. [ Links ]

Sandoval, O. M. R. and Paredes, L. O. 2013. Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). J. Agric. Food Chem. 61(1):193-201. https://doi.org/10.1021/ jf3034978. [ Links ]

SIAP. 2019. SIAP SIAPhttp://www.siap.gob.mx/cierre-de-la-produccion-agricola-por-estado . Búsqueda 22/01/19. [ Links ]

Sosa, B. A. y Ruiz, I. G. 2016. Será diabrotica speciosa germar, 1824 (coleoptera: chrysomelidae) una plaga de importancia económica para la producción de chía (Salvia hispanica L.) En México. Entomología mexicana. 3(1):269-274. [ Links ]

Sosa, B. A.; Ruiz, I. G.; Gordillo, S. G. V.; Etchevers, B. J. D.; Sharma, M. X.; Liu, X. y Robles, Torre, R. R. 2017. Respuesta de cuatro cultivares de chía (Salvia hispanica L.) a la fertilización nitrogenada en el petacal, Jalisco, México. Informes agronómicos de hispanoamérica. 28(1):8-13. [ Links ]

Suárez, N. P. D. 2018. Logística y recursos naturales en los países sin litoral: el caso de la soya y la chía en el estado plurinacional de Bolivia y Paraguay. CEPAL. 35-37. [ Links ]

Xingú, L. A.; González, H. A.; Cruz, T. E.; Sangerman, J. D. M.; Orozco, R. G. y Rubí, A. M. 2017. Chía (Salvia hispanica L.) situación actual y tendencias futuras. Rev. Mex. Cienc. Agríc. 8(7):1619-1631. https://doi.org/10.29312/remexca.v8i7.516. [ Links ]

Received: June 01, 2022; Accepted: October 01, 2022

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons