SciELO - Scientific Electronic Library Online

vol.60 issue1Bidimensional dynamic maps in optical resonatorsOndas solitarias no lineales: una introducción a los solitones ópticos espaciales author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física E

Print version ISSN 1870-3542

Rev. mex. fís. E vol.60 n.1 México Jan. 2014



A model of oscillator with variable mass


H. Rodriguesa*, N. Panzaa, D. Portes Jra, A. Soaresb


a Departamento de Física, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Av. Maracaná, 229, 20271-110, Rio de Janeiro, RJ, Brazil, * e-mail:

b Departamento de Matemática, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Av. Maracanã, 229, 20271-110, Rio de Janeiro, RJ, Brazil.


Received 8 April 2014
accepted 12 May 2014



We discuss the general form of Newton's second law for variable mass systems. We then derive the equation of motion of one-dimensional oscillator with time-varying mass. The obtained equation of motion is then analytically solved and the solutions are represented by means of Hypergeometric functions. The work is addressed to physics class at undergraduate level.

Keywords: Newton's second law; variable mass systems; oscillators; hypergeometric functions.


PACS: 45.20.D-;02.30.Hq





1. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 1 (Addison-Wesley 1964).         [ Links ]

2. M. S. Tiersten, Am. J. Phys. 37 (1969) 82.         [ Links ]

3. K. R Symon. Mechanics 3rd edn, (Addison-Wesley 1971).         [ Links ]

4. M. Alonso and E. J. Finn, Physics Vol. 1, (New York: Academic 1992).         [ Links ]

5. I. Campos, J. L. Jiménez, and G. del Valle, Eur. J. Phys. 24 (2003) 469.         [ Links ]

6. A. R Plastino. and J. C. Muzzio, Celestial Mechanics and Dynamical Astronomy 53 (1992) 227.         [ Links ]

7. H. Irschik and H. J. Holl, Appl. Mech. Rev. 57 (2004) 145.         [ Links ]

8. H. Rodrigues, M. O. Pinho, D. Portes Jr, and A. J. Santiago, International Journal of Mathematical Education in Science and Technology 40 (2009) 523.         [ Links ]

9. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, New York: Dover (1972).         [ Links ]

10. G. E. Andrews, R. Askey, and R. Roy, Special Functions, (Cambridge: Cambridge University Press 1999).         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License