SciELO - Scientific Electronic Library Online

 
vol.93New species and records of Vasaces (Coleóptera: Oedemeridae) from MexicoNew records of Aristolochia (Aristolochiaceae) from Brazil: the importance of citizen science as a tool to study geographic distribution, conservation and insect-plant interactions author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de biodiversidad

On-line version ISSN 2007-8706Print version ISSN 1870-3453

Rev. Mex. Biodiv. vol.93  México  2022  Epub June 05, 2023

https://doi.org/10.22201/ib.20078706e.2022.93.4893 

Taxonomy and systematics

Tuber caryophilum, a new truffle species growing in Carya illinoinensis orchards

Tuber caryophilum, una especie nueva de trufa creciendo en huertos de Carya illinoinensis

Judith A. Sánchez-Ledesmaa 

Gonzalo Guevara-Guerrerob  * 

Roberto Garibay-Orijelc 

Rodolfo Ángeles-Argáizc 

Verónica Ávila-Rodríguezd 

Jesús G. Arreola-Ávilaa 

Violeta Carrasco-Hernándeze 

Amparo Borja-de la Rosae 

Fabián González-Garcíaa 

a Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Aridas, Km. 40, Carretera Gómez Palacio-Chihuahua, 35230 Bermejillo, Durango, Mexico

b Instituto Tecnológico de Cd. Victoria, Av. Portes Gil 1301 Pte., 87010 Cd. Victoria, Tamaulipas, Mexico

c Universidad Nacional Autónoma de México, Instituto de Biología, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico

d Universidad Juárez del Estado de Durango, Facultad de Ciencias Biológicas, Av. Universidad s/n, Fracc. Philadelphia, 35010 Gómez Palacio, Durango, Mexico

e Universidad Autónoma Chapingo, Km 36.5 Carretera México-Texcoco, 56230 Chapingo, Estado de México, Mexico


Abstract

Tuber is a genus of ectomycorrhizal fungi with an important diversity of species associated with hosts in Juglandaceae. Tuber caryophilum is proposed as a new species based on ecological, morphological and phylogenetic characters of 2 ribosomal markers (ITS and LSU). This species is characterized by forming ectomycorrhizae on the roots of Carya illinoinensis (nogal pecanero) in the Comarca Lagunera of Coahuila and Chihuahua, Mexico and by exhibiting 18-48 × 10-27 μm echinulate ascospores. Tuber caryophilum belongs to the Rufum clade and is the sister species of Tuber theleascum, a species reported in northern Mexico associated with Quercus canbyi and Q. polymorpha. These 2 truffles belong to a clade from the southern USA and northern Mexico with taxa associated to Quercus and Carya, such as Tuber lyonii.

Keywords: Diversity; Ectomycorrhizal fungi; Hypogeous fungi; Pecan

Resumen

Tuber es un género de hongos ectomicorrízicos con una importante diversidad de especies asociada a hospederos en Junglandaceae. Tuber caryophilum es propuesta como una especie nueva basada en caracteres ecológicos, morfológicos y filogenéticos de 2 marcadores ribosomales (ITS y LSU). Esta especie se caracteriza por formar ectomicorrizas en las raíces de Carya illinoinensis (nogal pecanero) en la Comarca Lagunera de Coahuila y en Chihuahua, México y por presentar ascosporas equinuladas de 18-48 × 10-27 μm. Tuber caryophilum pertenece al clado Rufum y es la especie hermana de Tuber theleascum, una especie descrita del norte de México asociada con Quercus canbyi y Q. polymorpha. Estas 2 especies de trufas pertenecen a un clado del sur de EUA y norte de México con taxones asociados a Quercus y Carya como Tuber lyonii.

Palabras clave: Diversidad; Hongos ectomicorrizógenos; Hongos hipogeos; Nogal pecanero

Introduction

Species of the genus Tuber P. Micheli ex F.H. Wigg belong to the family Tuberaceae (Pezizales) and form ectomycorrhizae with many forest tree species (Bonito et al., 2011; Li et al., 2018). These species are ecologically and economically important (Guevara et al., 2013; Neri-Luna et al., 2012). Approximately 86 species of Tuber are known worldwide (Guevara et al., 2013; Kirk et al., 2008). They grow in mycorrhizal symbiotic association with gymnosperm and angiosperm trees. Thirty-eight species of Tuber have been described in North America (Guevara et al., 2013). The diversity of the genus in Mexico is expected to be high because this region is a center of diversification of Quercus Kappelle, Maarten and Pinus Linneo, 2 of the main ectomycorrhizal hosts of Tuber. Knowledge of Tuber in Mexico has recently expanded. For example, new species belonging to the Maculatum clade, such as Tuber castilloi Guevara, Bonito & Trappe, T. guevarai Bonito & Trappe (Guevara et al., 2013), Tuber mexiusanum Guevara, Bonito & Trappe (Guevara et al., 2013), T. mixtecorum J. García, Ayala Vázquez & de la Fuente (García-Jiménez et al., 2021) and T. theleascum M. Leonardi, A. Paz, G. Guevara & Pacioni (Leonardi et al., 2019) associated with Quercus spp., have been described in northeastern Mexico. Tuber incognitum and T. anniae belonging to the Puberulum clade have also been recorded in association with Quercus spp and Pinus montezumae in central Mexico (Piña-Páez et al., 2018). In association with trees of forest interest in Mexican ecosystems, T. guzmanii, T. separans, and T. pseudoseparans have also been found (Gómez-Reyes et al., 2018; Guevara et al., 2015; Piña-Páez et al., 2018).

Carya illinoinensis K. Koch (pecan) is an agronomically important ectomycorrhizal nut tree in whose plantations in the southern United States truffle species such as Tuber lyonii have been reported (Benucci et al., 2012; Bonito et al., 2011; Rodríguez et al., 2018). Ascomata and ectomycorrhizae of Tuber brennemanii and T. floridanum have also been found in these orchards (Grupe et al., 2018). In Mexico, Tuber diversity has not been explored in pecan plantations, although due to their particular soil and climatic conditions it is to be expected that there are species not yet described. In this paper, Tuber caryophilum sp. nov., a species in the Rufum clade, whose distribution includes Chihuahua and la Comarca Lagunera of Coahuila, Mexico, is described based on morphological, ecological and molecular characters.

Materials and methods

Ascomata were collected from a Carya illinoinensis orchard in the Comarca Lagunera of Coahuila and characterized following the recommendations of Castellano et al. (1989) and Pegler et al. (1993). Duplicates of the specimens were deposited in the José Castillo Tovar herbarium (ITCV) and MEXU. Characters examined included ascoma size and color, asci shape, asci wall thickness, and number of spores per ascus. Sections were cut by hand and then mounted in 5% KOH and Melzer's reagent for light microscopy. Thirty measurements of different structures such as spores and asci were made in 5% KOH. Microscopic structures were measured and photographed on a Velab VE-B3 microscope and a ZEISS Scope A1 optical stereoscope.

DNA was extracted by the CTAB method and amplified by PCR in 25μl reactions according to Sambrook et al. (1989). The reactions consisted of 2.5 μl of 10X PCR buffer, 2.0 μl of 2.5 Mm MgCl final concentration, 2.0 μl of dNTPs, 2.0 μl of each primer 10 μM, 1.5 units of Taq polymerase (GoTaq®, Promega, WI), 11.3 μl of MiliQ grade water and 3 μl of DNA. The ribosomal internal transcribed spacer (ITS) region was amplified with the ITS4 and ITS5 oligonucleotides. The PCR program consisted of an initial denaturation at 94 °C for 3 min, followed by 34 cycles of 94 °C, 51 °C and 72 °C for 1 min each and a final extension at 72 °C for 8 min (Taylor et al., 2006). Amplification was carried out on a MiniAmp Plus Thermal Cycler (Applied Biosystems, USA). A section of the large ribosome subunit (LSU) was amplified with the LR0R and LR5 oligonucleotides (Vilgalys & Hester, 1990) and the enzyme Taq & Load (Avantor, PA, USA). The 25 μl reactions consisted of 5 μl of master mix, 0.25 μl of each oligonucleotide 50 μM, water, and 1 μl of DNA. The PCR program began with denaturation at 94 °C for 4 min, followed by 35 cycles at 94 °C, 54 °C and 72 °C for 1 min each and final extension at 72 °C for 10 min. PCR products were cleaned with ExoSAP-IT (Thermofisher, USA) with some modifications (Ángeles-Argáiz et al., 2016). DNA and PCR products were reviewed on 0.8% and 1.5% agarose gels with 0.5% TBE buffer. Samples were stained with Gel Red (Bioitium, CA, USA) using a 100 bp molecular weight marker as reference. Gels were photographed on a Multidoc-IT photodocumenter (Analytik Jena Company, CA, USA). ITS PCR products were sequenced in both directions at Macrogen (Rockville, MD, USA), with PCR primers. LSU sequences were obtained at the Biodiversity and Health Sequencing Laboratory of the Institute of Biology, UNAM, using BigDye Terminator 3.1 (Thermofisher), also in both directions.

Nucleotide sequences were edited and aligned in Geneious Prime version 2021 with the MUSCLE algorithm (Maddison & Maddison, 2016). Sequences of T. caryophilum voucher materials were deposited in GenBank under accession numbers MZ092919 and OK642388 for ITS, OK642397 and OK642398 for LSU and OK642406 for the ITS of ectomycorrhizae. The alignment for phylogenetic analyses included the sequences generated in this study, those previously included in analyses of the Rufum clade (Eberhart et al., 2020; Leonardi et al., 2019) and sequences of high nucleotide similarity obtained from the GenBank database by means of the BLAST algorithm (Altschul et al., 1990) (Table 1). A total of 72 samples from 26 taxa of the Rufum clade and 1 outgroup were aligned (Fig. 1). The concatenated alignment had 1,076 bp where bases 1-556 corresponded with the ITS and bases 557-1,076 with the LSU. The alignments were reviewed manually excluding ambiguous regions.

Table 1 Tuber species and DNA sequences used in the phylogenetic analyses. New sequences are in bold. 

Voucher/Isolate Species ITS 28S Country
GB32 Tuber borchii FJ809799 FJ809799 Italy
MUB_Fung-0974 Tuber buendiae MT006095 NG_073829 Spain
SOC_727 Tuber candidum AY830856
st3 Tuber caryophilum MZ092919 OK642388 Mexico
st3_N2 Tuber caryophilum OK642397 OK642398 Mexico
MA2721 Tuber cf. ferrugineum FJ809809
BJTC_FAN465 Tuber crassitunicatum MH115295
MUB_Fung-0972 Tuber ferrugineum MN962719 Spain
ZB3363 Tuber ferrugineum MT270600 Hungary
BJTC_FAN103 Tuber huidongense MH115294 MH115301 China
SDBR-CMU-MTUF007 Tuber huidongense KT758731 KU207733 Thailand
T107 Tuber huidongense GU979099 China
T110 Tuber huidongense FJ797882 GU979093 China
BJTC_FAN550 Tuber liaotongense MH115302 China
OSC87602 Tuber liaotongense FJ809813 China
T111_IFS89300 Tuber liaotongense GU979037
T79_IFS87062 Tuber liaotongense GU979036
BJTC_FAN674 Tuber lishanense MH115307 China
BJTC_FAN683 Tuber lishanense MH115305 China
BJTC_FAN718 Tuber lishanense NR_160619 NG_064527 China
JT17457 Tuber luomae MH142474 FJ809812 USA
103c Tuber lyonii GQ379726 GQ379726 USA
12c Tuber lyonii GQ379723 GQ379723 USA
134b Tuber lyonii GQ379724 GQ379724 USA
3a Tuber lyonii GQ379725 GQ379725 USA
63c Tuber lyonii GQ379722 GQ379722 USA
84c Tuber lyonii GQ379721 GQ379721 USA
GA21 Tuber lyonii JQ925698 USA
GB112 Tuber lyonii EU394704 EU394704 USA
GB119 Tuber lyonii FJ748911 FJ809808 USA
JT32319 Tuber malacodermum FJ809889 JQ925702 Spain
AH31737 Tuber melosporum JN392144 JN392202 Spain
BJTC_FAN220 Tuber microspiculatum MH115315 MH115316 China
AH39101 Tuber nitidum JX402092 JN392331
BM105 Tuber nitidum FJ809885 FJ809807 Spain
ZB3914 Tuber nitidum MT270604 Hungary
HMAS_97125 Tuber piceatum NR_160620 NG_064528 China
AQUÍ_9728 Tuber pustulatum MK211311 France
LUGO_ECC17072701 Tuber pustulatum MW376716 Spain
TR60 Tuber pustulatum MW077451 MW076943
1480 Tuber rufum EF362476 Italy
1780 Tuber rufum EF362474 France
FLAS_F-65581 Tuber rufum MT374048 France
FLAS_F-65581 Tuber rufum MT350486 France
TR118 Tuber rufum MT270605 Italy
TR69 Tuber rufum MT270608 Spain
TR70 Tuber rufum MT270602 Spain
ZB3193 Tuber rufum MT270603 Slovakia
BJTC_FAN105 Tuber sinoalbidum MH115298 MH115299 China
FLAS_MES-646 Tuber sp. MT156470 USA
FLAS-F-65585 Tuber sp. MT350482 France
JT15162 Tuber sp. HM485391 USA
BR159 Tuber sp. BR-2020a MW579345 USA
JT12487 Tuber sphaerosporum FJ809853 FJ809853 USA
JT19772 Tuber sphaerosporum FJ809854 FJ809854 USA
RH158 Tuber spinoreticulatum GQ221454 FJ809814 USA
U188 Tuber spinoreticulatum FJ809884 NG_059919 USA
BJTC_FAN153 Tuber subglobosum MH115322 China
BJTC_FAN222 Tuber subglobosum KF002728 MH115324 China
BJTC_FAN432 Tuber subglobosum MH115323 China
FLAS_MES-448 Tuber subglobosum MT156449 MT156449 China
AQUI_9729 Tuber theleascum MK211283 MK211312 Mexico
AQUI_9730 Tuber theleascum MK211284 MK211313 Mexico
ITCV_884 Tuber theleascum HM485426 Mexico
ITCV_908 Tuber theleascum NR_164592 Mexico
BJTC_FAN225 Tuber umbilicatum MH115325 MH115326 China
T104 Tuber umbilicatum FJ797879
T117 Tuber umbilicatum FJ797880
T30_HKAS48267 Tuber umbilicatum GU979032 GU979088 China
HMAS_60239 Tuber wenchuanense JX267044 MH115327 Italy
MUB_Fung-0740 Tuber zambonelliae MW632952 Spain
Mub_Fung-0741 Tuber zambonelliae MW632953 Spain

Figure 1 Phylogenetic placement of Tuber caryophilum sp. nov. in the Rufum clade. The tree is based on an ITS and LSU rDNA concatenated alignment. The consensus tree represents a Bayesian approximation with 1,000 generations and a maximum likelihood analysis with 1,000 bootstrap replicates. Just support values higher than 0.70 and/or 70% are displayed. 

Phylogenetic analyses and evolutionary model selection were performed using IQ-TREE (v2.1.4, Minh et al., 2020) from the concatenated and partitioned alignment (IQ-TREE execution line: iqtree -s ../data/concat.fasta -p Partition.nex -m MFP --runs 100 --abayes -B 1000 -T AUTO -ntmax 28). The best evolutionary models were selected with ModelFinder (Kalyaanamoorthy et al., 2017). The best evolutionary model for the ITS marker was TIM2+F+I+G4 and for LSU it was TIM3e+I+G4. The resulting tree is the consensus of 100 replicates of 2 phylogenetic analyses; an ultra-fast Maximum Likelihood analysis (Hoang et al., 2018) with 1,000 bootstrap replicates (MVB), complemented with a Bayesian approximation branch support (BPP) analysis (Anisimova et al., 2011). To show the ectomycorrhizal status and distribution of T. caryophilum, the ITS sequence of the holotype was contrasted by means of nucleotide similarity (% ITS NS) against ectomycorrhizal sequences of Carya illinoinensis obtained from an orchard in Chihuahua, Mexico.

Results

The consensus tree of Bayesian approximation and Maximum likelihood shows the Rufum clade as monophyletic and with high support (BPP = 1, MV = 100). Within this clade, T. caryophilum is an independent, monophyletic and well-supported clade (BPP = 1, MVB = 100). This species appears as the sister clade of T. theleascum (BPP = 0.99, MVB = 98). In turn, these 2 species are grouped with the T. lyonii complex in a well-supported clade (BPP = 1, MVB = 100) made up of species from the southern USA and northern Mexico. Moreover, we found that the ITS sequence of the T. caryophilum holotype had a 99.3% NS (4 substitutions/549 bp) with mycorrhizal sequences from a pecan orchard in Chihuahua. This indicates that, like T. lyonii, T. caryophilum is an ectomycorrhizal symbiont of C. illinoinensis. Consequently, Tuber caryophilum is designated as a new species supported by ITS and LSU phylogenetic analyses of rnDNA, morphological characters, and ecology.

Description

Tuber caryophilum J.A. Sánchez, G. Guevara and R. Garibay-Orijel, sp. nov.

Fig. 2a-f

MycoBank 840581

GenBank MZ092919 (ITS), OK642397 (LSU)

Figure 2 Tuber caryophilum (holotype ITCV 1888). a, Ascomata showing peridial surface; b, ascoma in cross section showing glebal surface; c, peridium cross section showing pseudoparenchyma; d, peridium in cross section; e, ascospores within asci showing alveoli; f, ascospore with equinulate surface. a, b (bar = 1 cm); c, d, e, f (bar = 20μm). 

Type. Mexico, Coahuila, Municipality of Viesca, Tierra Blanca Orchard, September 4, 2019, Sánchez st3 (ITCV 1888 "José Castillo Tovar" herbarium).

Diagnosis. Cream peridium with translucent veins towards the epicutis; pseudoparenchymatous epicutis mainly although in some areas it is prosenchymatous, isodiametric hyphae of 3-17 μm; echinulate ascospores of 18-48 x 10-27 μm; it grows in pecan (Carya illinoinensis) orchards.

Ascoma. Subglobose to irregular, 19 × 10 × 18 mm, translucent veins on the light brown to dark brown peridium when dry, with a white to cream furrow and an irregular linear or "V"-shaped margin continuing into the gleba as veins, some areas dark brown with cherry tints and with dark brown to reddish insect caverns; peridium smooth, some areas rough, separable from the gleba, without cystidia. White, cream gleba that is gray to dark when dried, marbled with white to gray, dark brown to reddish brown veins that continue towards the peridium (furrows). Strong, very pleasant and distinctive odor, unrecorded taste.

Peridium. 110-220 μm thick, epicutis 50-75 μm, pseudoparenchymatous in its outermost part, although in some parts it is prosenchymatous with hyphae 3-17 μm wide, versiform to angular or isodiametric, wall 1-4 μm thick, yellow to orange-reddish in KOH; subcutis 70-150 μm wide, pseudoparenchymatous strongly interwoven, hyaline hyphae in KOH, septate 2-4 μm wide. Gleba, intertwined vein hyphae, 2-4 μm at widest part. Asci: 47 105 × 32-50 μm (Q = 1.07-2.63), average 67.1 × 40.6 μm (Q = 1.7) including pedicel, subglobose to broadly ellipsoid, hyaline in KOH, 1-2 μm double wall may have a short to very long pedicel or in some it is absent, 1-5 ascospores per ascus. Ascospores: 18-48 × 10-27 μm (Q = 1-2.40), average 30.1 × 17.2 (Q = 1.76) subglobose to broadly ellipsoid or spindle-shaped excluding ornamentation; echinulate, echinulae mostly free, in some of them a subreticula can be observed, 1-4 μm high. Asci with 1 ascospore 35-48 × 18-27 μm (Q = 1.30-2.33), average 42.1 × 22.4 (Q = 1.91); 2 ascospores 20-38 × 15-21μm (Q = 1-2.4), average 31.3 × 17.7 μm (Q = 1.79); 3 ascospores 18-33 × 14-18 μm (Q = 1.06-2), average 27.1 × 16.6 (Q = 1.63); 4 ascospores 21-33 × 12-18 μm (Q = 1.44-2.13), average 26.4 × 15.1 (Q = 1.76); 5 ascospores 19-33 × 10-17 μm (Q = 1.19-2.36), average 24 × 14.4 (Q = 1.69).

Taxonomic summary

Etymology. Refers to the ectomycorrhizal association between T. caryophilum and Carya illinoinensis.

Distribution and ecology. In northern Mexico in la Comarca Lagunera of Coahuila and Chihuahua, ectomycorrhizal symbiont of Carya illinoinensis. To date it has only been found in pecan orchards, not in natural habitats.

Habitat. Hypogeous, solitary or gregarious under pecan trees (Carya illinoinensis).

Collections examined in Mexico. Coahuila, Municipality of Viesca, Tierra Blanca Orchard, September 4, 2019, Sánchez st3_N2, MEXU 30227; Sánchez st3_N3, ITCV 1890; Sánchez st3_N4, ITCV 1891.

Remarks

Phylogenetic analyses show that Tuber caryophilum belongs to the Rufum clade and, together with T. theleascum (ITS NS = 93.6-93-9%), is related (ITS NS = 90.4-93.1%) to the T. lyonii complex, which is also an ectomycorrhizal species of Carya illinoinensis. Tuber caryophilum differs from T. theleascum because the latter has ascomata without translucent areas on the peridium, a pseudoparenchymatous epicutis with elongated prostrate or intertwined hyphae 4-7 μm wide and smooth, while the former species has translucent areas on the peridium and a pseudoparenchymatous epicutis with isodiametric hyphae 13-17 μm wide. Furthermore, they differ in ascospores size; T. caryophilum has 18-48 × 10-27 μm ascospores, whereas in T. theleascum they are 18-44 × 13-25 μm. Tuber caryophilum is also similar to T. lyonii, an edible truffle species native to the southeastern USA (Bonito et al., 2013; Sharma et al., 2012). However, they differ macro- and microscopically; in T. lyonii, peridium width is larger (300-500 μm), ascospores are ellipsoid 30-37 × 22-24 μm and epicutis width is 20-40 μm, with hyphae 6-10 μm wide (Healy et al., 2016; Sharma et al., 2012). In contrast, in T. caryophilum, the peridium width is 110-220 μm, its ascospores are 18-48 × 10-27 μm and epicutis width is 50-75 μm, with 3-17 μm hyphae. These 3 species share important microscopic features such as the pseudoparenchymatous peridium surface and most of their ascospores are subglobose to ellipsoid. Other common features are that all 3 are closely related in the same clade of the Rufum section and that they develop in pecan orchards (Grupe et al., 2018; Sharma et al., 2012; Trappe et al., 1996).

Other Tuber species associated with pecan plantations have been described but these do not belong to the Rufum section (Table 2). One of these species is Tuber brennemanii, which belongs to the Maculatum clade and therefore differs morphologically and molecularly from species belonging to the Rufum clade. For example, T. brennemanii presents anamorphic ascospores and a periclinal subperidium (Grupe et al., 2018). Likewise, Tuber floridanum, also on the Maculatum clade, has been found in pecan orchards. This species is distinguished by the presence of dermatocystidia and commonly has 2-4 spores and reticulate ornamentation as present in the Maculatum (Grupe et al., 2018). Regarding T. floridanum, it is known to have been unintentionally introduced into southern Brazil on the roots of pecan tree seedlings.

Table 2 Tuber species related to Tuber caryophilum or associated with Carya illinoinensis. 

Species Peridium
Surface
Peridium color
and thickness
Epicutis /
subcutis and
cell size
Ascospores size
without spines/alv.
Ascospores
shape
Ascopores
by asci
Geography and
host
Tuber
caryophilum
Smooth,
separable
without
dermatosictidia
Yellow to
reddish orange
110-220μm
Ps. 50-75 μm,
3-17 μm / Pr.
70-150 μm
18-48 × 10-27 μm Subglobose
to broadly
ellipsoid
1-5 Comarca
Lagunera,
Mexico. Carya
illinoinensis
Tuber lyonii Smooth
and slightly
pruinose
Yellowish
brown 300-500 μm
Ps. 20-40 μm,
6-10 μm
30-37 × 22-24 μm Ellipsoid 1-4 Northeastern
Mexico; Florida,
USA. Quercus,
C. illinoinensis
Tuber
theleascum
Smooth Yellow to
reddish brown
160-250 μm
Ps. 45-150 μm,
4-7 μm / Pr.
150 μm
18-44 × 13-25 μm Claviform
to
subglobose
1-4 Nuevo Leon,
Mexico.
Quercus canbyi,
Q. polymorpha,
Q. laeta,
Arbutus
Tuber
brennemanii
Smooth Yellow to
reddish brown
80-600 μm
Ps. 50-200 μm,
2.5-25 μm
28-61 × 20-36 μm Isodiametric
globose to
subglobose
1-4 Nuevo Leon,
Mexico;
Massachusetts
and Georgia,
USA. C.
illinoinensis,
Quercus, and
other Fagales
Tuber
floridanum
Smooth Reddish brown
300-1120 μm
Ps. 140-800 μm,
5-35 μm
36-51 × 26-38 μm Isodiametric
globose to
subglobose
2-4 Florida,
Georgia, and
Mississippi,
USA. C.
illinoinensis and
other Fagales

Ps: Pseudoparenchymatous; Pr: prosenchymatous.

Given the phylogenetic closeness of T. caryophilum to T. lyonii, its discovery in pecan orchards opens the door to its use in northern Mexico. To develop this, it will be necessary to carry out mycorrhization experiments in nurseries and to know its organoleptic properties. This could promote a system of co-cultivation between T. caryophilum and C. illinoinensis as occurs in orchards in southeastern Florida and Europe where various species of truffles are harvested alongside nut production (Bonito et al., 2013; Lefevre et al., 2012; Trappe et al., 1996).

Acknowledgements

To Conacyt for the financial support and the producers of pecan for the access to the Carya illinoinensis orchards. GG, thanks TecNM for research support.

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410. [ Links ]

Anisimova, M., Gil, M., Dufayard, J. F., Dessimoz, C., & Gascuel, O. (2011). Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Systematic Biology, 60, 685-699. https://doi.org/10.1093/sysbio/syr041. [ Links ]

Benucci, G. M. N., Bonito, G., Falini, L. B., & Bencivenga, M. (2012). Mycorrhization of Pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum Vittad. and Tuber borchii Vittad. Mycorrhiza, 22, 383-392. https://doi.org/10.1007/s00572-011-0413-z. [ Links ]

Benucci, G. M. N., Csorbai, A. G., Falini, L. B., Bencivenga, M., Di Massimo, G., & Donnini, D. (2012). Mycorrhization of Quercus robur L., Quercus cerris L. and Corylus avellana L. seedlings with Tuber macrosporum Vittad. Mycorrhiza , 22, 639-646. https://doi.org/10.1007/s00572-012-0441-3. [ Links ]

Bonito, G., Smith, M. E., Nowak, M., Healy, R. A., Guevara, G., Cázares, E. et al. (2013). Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. Plos One, 8, e52765. https://doi.org/10.1371/journal.pone.0052765. [ Links ]

Bonito, G., Brenneman, T., & Vilgalys, R. (2011). Ectomycorrhizal fungal diversity in orchards of cultivated pecan (Carya illinoinensis; Juglandaceae). Mycorrhiza , 21, 601-612. https://doi.org/10.1007/s00572-011-0368-0. [ Links ]

Castellano, M. A. (1989). Key to spores of the genera of hypogeous fungi of north temperate forests with special reference to animal mycophagy. Eureka, USA: Mad River Press. [ Links ]

Eberhart, J., Trappe, J., Páez, C. P., & Bonito, G. (2020). Tuber luomae, a new spiny-spored truffle species from the Pacific Northwest, USA. Fungal Systematics and Evolution, 6, 299. https://doi.org/10.3114/fuse.2020.06.15. [ Links ]

Fan, L., Han, L., Zhang, P. R., & Yan, X. Y. (2016). Molecular analysis of Chinese truffles resembling Tuber californicum in morphology reveals a rich pattern of species diversity with emphasis on four new species. Mycologia, 108, 344-353. https://doi.org/10.3852/14-343. [ Links ]

García-Jiménez, J., Ayala-Vásquez, O., Guevara-Guerrero, G., Garza-Ocanas, F., & De La Fuente, J. I. (2021). Tuber mixtecorum (Tuberaceae, Pezizales) a new truffle in the Maculatum clade from Mexico. Phytotaxa, 509, 113-120. [ Links ]

Gómez-Reyes, V. M., Vázquez-Marrufo, G., Ortega Gómez, A. M., & Guevara Guerrero, G. (2018). Ascomicetos hipogeos de la región occidental del Sistema Volcánico Transversal, México. Acta Botanica Mexicana, 125, 37-48. https://doi.org/10.21829/abm125.2018.1327. [ Links ]

Grupe, A. C., Sulzbacher, M. A., Grebenc, T., Healy, R., Bonito, G., & Smith, M. E. (2018). Tuber brennemanii and Tuber floridanum: Two new Tuber species are among the most commonly detected ectomycorrhizal taxa within commercial pecan (Carya illinoinensis) orchards. Mycologia, 110, 780-790. https://doi.org/10.1080/00275514.2018.1490121. [ Links ]

Guevara, G., Bonito, G., & Cázares, E. (2013). Revisión del género Tuber (Tuberaceae: Pezizales) de México. Revista Mexicana de Biodiversidad, 84, S39-S49. https://doi.org/10.7550/rmb.31981. [ Links ]

Guevara, G., Bonito, G., Cázares, E., Rodríguez, J., Vilgalys, R., & Trappe, J. M. (2008). Tuber regimontanum, new species of truffle from Mexico. Revista Mexicana de Micología, 26, 17-20. [ Links ]

Guevara, G., Bonito, G., Trappe, J. M., Cázares, E., Williams, G., Healy, R. A. et al. (2013). New North American truffles (Tuber spp.) and their ectomycorrhizal associations. Mycologia, 105, 194-209. https://doi.org/10.3852/12-087. [ Links ]

Guevara-Guerrero, G., Bonito, G., Cázares-González, E., Healy, R., Vilgalys, R., & Trappe, J. (2015). Novel Tuber spp. (Tuberaceae, Pezizales) in the Puberulum Group from Mexico. Ascomycete.org, 7, 367-374. https://doi.org/10.25664/art-0161. [ Links ]

Healy, R., Bonito, G. M., & Smith, M. E. (2016). A brief overview of the systematics, taxonomy, and ecology of the Tuber rufum clade. In A. Zambonelli, M. Iotti, & C. Murat (Eds.), True truffle (Tuber spp.) in the World (pp. 125-136). Berlin: Springer. https://doi.org/10.1007/978-3-319-31436-5_8. [ Links ]

Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518-522. https://doi.org/10.1093/molbev/msx281. [ Links ]

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587-589. [ Links ]

Kirk, P. M., Cannon, P. F., Minter, D. W., & Stalpers, J. A. (2008). Ainsworth and Bisby's dictionary of the fungi. Wallingford: CABI. [ Links ]

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution , 35, 1547-1549. https://doi.org/10.1093/molbev/msy096. [ Links ]

Lancellotti, E., Iotti, M., Zambonelli, A., & Franceschini, A. (2016). The Puberulum group sensu lato (whitish truffles). In A. Zambonelli, M. Iotti, & C. Murat (Eds.), True truffle (Tuber spp.) in the World (pp. 105-124). Berlin: Springer . https://doi.org/10.1007/978-3-319-31436-5_7. [ Links ]

Lefevre, C. (2012). Native and cultivated truffles of North America. In A. Zambonelli, & G. Bonito (Eds.), Edible ectomycorrhizal mushrooms (pp. 209-226). Berlin: Springer . https://doi.org/10.1007/978-3-642-33823-6_12. [ Links ]

Leonardi, M., Paz-Conde, A., Guevara, G., Salvi, D., & Pacioni, G. (2019). Two new species of Tuber previously reported as Tuber malacodermum. Mycologia, 111, 676-689. https://doi.org/10.1080/00275514.2019.1603777. [ Links ]

Li, Q., Yan, L., Ye, L., Zhou, J., Zhang, B., Peng, W. et al. (2018). Chinese black truffle (Tuber indicum) alters the ectomycorrhizosphere and endoectomycosphere microbiome and metabolic profiles of the host tree Quercus aliena. Frontiers Microbiology, 9, 2202. https://doi.org/10.3389/fmicb.2018.02202. [ Links ]

Maddison, W. P, & Maddison, D. R. (2016). Mesquite: a modular system for evolutionary analysis (Version 3.10) http://mesquiteproject.org. [ Links ]

Marozzi, G., Sánchez, S., Benucci, G. M. N., Bonito, G., Falini, L. B., Albertini, E., & Donnini, D. (2017). Mycorrhization of pecan (Carya illinoinensis) with black truffles: Tuber melanosporum and Tuber brumale. Mycorrhiza , 27, 303-309. https://doi.org/10.1007/s00572-016-0743-y. [ Links ]

Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution , 37, 1530-1534. https://doi.org/10.1093/molbev/msaa015. [ Links ]

Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford: Oxford University Press. [ Links ]

Neri-Luna, C., & Villarreal-Ruiz, L. (2012). Simbiosis micorrícica: un análisis de su relevante función ecosistémica y en la provisión de servicios ambientales. In M. Huerta, & F. Castro (Comps.), Interacciones ecológicas (pp. 37-61). Guadalajara: Universidad de Guadalajara. https://doi.org/10.1007/s00572-016-0743-y. [ Links ]

Pegler, D. N., Spooner, B. M., & Young, T. W. K. (1993). British truffles, a revision of British hypogeous fungi. Kew, UK: Royal Botanic Gardens. [ Links ]

Pina-Paez, C., Bonito, G., Guevara-Guerrero, G., Castellano, M. A., Garibay Orijel, R., Trappe, J. M. et al. (2018). Description and distribution of Tuber incognitum sp. nov. and Tuber anniae in the Transmexican Volcanic Belt, Mycokeys, 41, 17-27. https://doi.org/10.3897/mycokeys.41.28130. [ Links ]

Rincón, A., Alvarez, I. F., & Pera, J. (2001). Inoculation of containerized Pinus pinea L. seedlings with seven ectomycorrhizal fungi. Mycorrhiza , 11, 265-271. https://doi.org/10.1007/s005720100127. [ Links ]

Rodríguez, R. A., Valdés, M. P., & Ortiz, S. (2018). Características agronómicas y calidad nutricional de los frutos y semillas de zapallo Cucurbita sp. Revista Colombiana de Ciencia Animal Recia, 10, 86-97. https://doi.org/10.24188/recia.v10.n1.2018.636. [ Links ]

Sambrook, J., Fritsch, E., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. (No. Ed. 2). Long Island, NY: Cold Spring Harbor Laboratory Press. [ Links ]

Sharma, J., Trela, B., Wang, S., Smith, M., & Bonito, G. (2012). Pecan truffle (Tuber lyonii) in Texas. Pecan South, 2012, 16-24. [ Links ]

Trappe, J. M. (1979). The orders, families, and genera of hypogeous Ascomycotina (truffles and their relatives). Mycotaxon, 9, 297-340. [ Links ]

Trappe, J. M., Jumpponen, A. M. J., & Cazares, E. (1996). NATS truffle and truffle-like fungi. 5. Tuber lyonii (= T. texense), with a key to the spiny-spored Tuber species groups. Mycotaxon , 60, 365-372. [ Links ]

Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 4238-4246. [ Links ]

Received: December 15, 2021; Accepted: July 04, 2022

* Corresponding author: guevaragg@hotmail.com (G. Guevara-Guerrero)

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License