SciELO - Scientific Electronic Library Online

 
vol.55 issue1Air Dehydration by Permeation Through Dimethylpolysiloxane/polysulfone MembraneSyntheses of Three Mono-Brominated Enamide Analogs of Natural Alkaloids Isolated from the Tasmanian Marine Bryozoan Amathia Wilson author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of the Mexican Chemical Society

Print version ISSN 1870-249X

J. Mex. Chem. Soc vol.55 n.1 Ciudad de México Jan./Mar. 2011

 

Article

 

Cyanide Degradation by Direct and Indirect Electrochemical Oxidation in Electro–active Support Electrolyte Aqueous Solutions

 

Rosa María Felix–Navarro,1* Shui Wai Lin,1 Virginia Violante–Delgadillo,1 Arturo Zizumbo–Lopez1 and Sergio Perez–Sicairos1,2

 

1 Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Blvd. Industrial S/N, Mesa de Otay, C.P. 22500, Tijuana, Baja California, México.

2 Facultad de Ciencias Químico Biológicas de la Universidad Autónoma de Sinaloa, Blvd. Las Américas y Av. Universitarios, Ciudad Universitaria, C.P. 80010, Culiacán, Sinaloa.

 

Received June 14, 2010.
Accepted December 10, 2010.

 

Abstract

The cyanide degradation was performed in an electrochemical reactor (with anode of reticulated vitreous carbon and cathodes of graphite) with three compartments separated by a polymeric membrane. The experiments were made under different conditions; supporting electrolytic media (NaOH, NaCl, NaNO3 and Na2SO4), applied potentials (3.0, 4.0, 5.0 and 6.0 V) and volumetric flows of 130, 240, 480, 1058 and 1610 mL/min with recirculation. The best conditions for the cyanide degradation are: NaCl (0.1 M) as supporting electrolyte, applied cell potential of 5.0 V and volumetric flow of 480 mL/min. Under these conditions almost 100% of cyanide degradation was achieved.

Keywords: cyanide, electrochemical reactor, electrolyte, reticulated vitreous carbon, polymeric membrane.

 

Resumen

La degradación de cianuro se realizó en un reactor electroquímico (con ánodo de carbono vítreo reticulado y cátodos de grafito), con tres compartimentos separados por una membrana polimérica. Los experimentos se realizaron en condiciones diferentes; medios electrolíticos (NaOH, NaCl, Na2SO4 y NaNO3), potenciales aplicados (3.0, 4.0, 5.0 y 6.0 V) y el flujo volumétrico de 130, 240, 480, 1058 y 1610 ml / min con recirculación. Las mejores condiciones para la degradación del cianuro son: electrolito de soporte NaCl (0.1 M), potencial de celda aplicado 5.0 V y un flujo volumétrico de 480 mL / min. Bajo estas condiciones se logró una degradación de cianuro cercano al 100%.

Palabras clave: cianuro, reactor electroquímico, electrolito, carbón vítreo reticulado, membrana polimérica.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

The authors wish to acknowledge Consejo Nacional de Ciencia y Tecnologia (CONACYT # 47959) for their financial support to this project.

 

References

1. Peterson, J. W., in: Industrial Wastewater Treatment Technology, Butterworth Publishers, New York, 1985, 115–133.         [ Links ]

2. Arikado, T.; Iwakura, C.; Yoneyama, H.; Tamura, H. Electrochim. Acta 1976, 21, 1021–1027.         [ Links ]

3. Kelsall, G. H.; Savage, S.; Brandt, D. J. Electrochem. Soc. 1991, 138, 117–124.         [ Links ]

4. Hine, F.; Yasuda, M.; Iida, T.; Ogata, Y. Electrochim. Acta 1986, 31, 1389–1395.         [ Links ]

5. Tissot, P.; Frangniere, M. J. Appl. Electrochem. 1994, 24, 509–512.         [ Links ]

6. Hofseth, C. S.; Chapman, T. W. J. Electrochem. Soc. 1999, 146, 199–207.         [ Links ]

7. El–Ghaoui, E. A.; Jansson, R. E. W.; Moreland, C. J. Appl. Electrochem. 1982, 12, 69–73.         [ Links ]

8. El–Ghaoui, E. A.; Jansson, R. E. W. J. Appl. Electrochem. 1982, 12, 75–80.         [ Links ]

9. Wiaux, J. P. Oberfläche–Surface 1989, 30, 25–31.         [ Links ]

10. Yasuda, M.; Ohkawa, A.; Tonsho, M.; Yasukawa, S. Denki Kagaku 1989, 57, 682–687.         [ Links ]

11. Ochmann, R.; Kastening, B. Chem. Ing. Tech. 1989, 61, 830–835.         [ Links ]

12. Sabarathinam, R. M.; Basha, C. A.; Vijayavalli, R. Bull. Electrochem. 1985, 1, 143, 207–214.         [ Links ]

13. Lin, M. L.; Wang, Y. Y.; Wan, C. C. J. Appl. Electrochem. 1992, 22, 1197–1203.         [ Links ]

14. Sun, Y. F.; Kirschenbaum, L. J. Coord. Chem. 1992, 26, 127–131.         [ Links ]

15. Ho, S. P.; Wang, Y. Y.; Wan, C. C. Water Res. 1990, 24, 1317–1321.         [ Links ]

16. Hwang, J. Y.; Wang, Y. Y.; Wan, C. C. J. Appl. Electrochem. 1987, 17, 684–694.         [ Links ]

17. Wels, B.; Johnson, D. C. J. Electrochem. Soc., 1990, 137, 2785–2791.         [ Links ]

18. Zhou, C. D.; Chin, D. T. Plat. Surf. Finish. 1993, 80, 69–76.         [ Links ]

19. Matsuda, R. Bull. Chem. Soc. Jpn. 1936, 11, 1–8.         [ Links ]

20. Matsuda, R.; Nishimori, T. Bull. Chem. Soc. Jpn. 1936, 11, 650–657.         [ Links ]

21. Matsuda, R.; Nishimori, T. Bull. Chem. Soc. Jpn. 1937, 12, 331–342.         [ Links ]

22. Ogata, Y.; Akada, T. Tetrahedron 1970, 26, 5945–5951.         [ Links ]

23. Guerrero, J. Destrucción Electroquímica de Benceno y Fenol en Descargas Acuosas de Industrias Químicas¨ Tesis de Maestría, Centro de Graduados Instituto Tecnológico de Tijuana, México, 1995.         [ Links ]

24. Lide, D. R. CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1995, 8–21.         [ Links ]

25. Bockris, J. O'M. (ed.) Electrochemistry of cleaner Environments, Plenum Press, New York–London, 1972, 117–122; 201.         [ Links ]

26. Tan, T. C.; Teo, W. K.; Chin, D. T. Chem. Eng. Commun. 1985, 38, 125–133.         [ Links ]

27. Baker, R. W.; Cussler, E. L.; Eykamp, W.; Koros, W. J.; Riley, R. L.; Strathmann, H. Membrane Separation System, Noyes Data Corp, New York–London, 1991, 126–131.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License