SciELO - Scientific Electronic Library Online

 
vol.54 issue4N-Ethylbenzylammonium Fluorochromate (VI) Adsorbed on Silica Gel, a Mild and Selective Heterogeneous ReagentSensitive and Selective Extractive Spectrophotometric Method for the Determination of Hydroxyzine Dihydrochloride in Pharmaceuticals author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of the Mexican Chemical Society

Print version ISSN 1870-249X

J. Mex. Chem. Soc vol.54 n.4 México Oct./Dec. 2010

 

Article

 

Synthesis and Antithyroid Activity of Some 8–Substituted Purine Derivatives

 

Ismat Fatima,1 Munawar A. Munawar1* and Affia Tasneem2

 

1 Institute of Chemistry, University of the Punjab, Lahore–Pakistan.

2 CENUM, Mayo Hospital, Lahore–Pakistan. mamunawar@chem.pu.edu.pk

 

Received August 6, 2010.
Accepted September 9, 2010.

 

Abstract

Some novel as well as known derivatives of 8–sulfanyl–3,9–dihydro–1H–purine–2,6–dione were synthesized and their antithyroid activity was measured in rats after administration of a daily dose of 20mg/kg via i.p. injection for 15 days. Free thyroxine and triiodothyronine concentrations were determined using radioimmunoassay technique. The assay results showed decrease in the hormonal concentrations for the animals treated with these compounds as compared to the control animals. Similarly, thyroid stimulating hormone level was measured with ELISA method and the results demonstrated a comparative increase of this hormone for the treated animals. The hormonal variations indicated significant (α<0.05) activity of the compounds. Histological study of thyroid tissues from the test animals showed cellular modifications in the treated animals like cylindrical shape of follicular epithelium, depletion of colloid and high values of thyroid body indices. All these factors further confirmed the antithyroid effects of the compounds under study.

Keywords: 8–sulfanyl–3,9–dihydro–1H–purine–2,6–dione, derivatives, antithyroid activity, thyroid hormones, histology.

 

Resumen

Se sintetizaron algunos derivados nuevos y ya conocidos de la 8–sulfanil–3,9–dihidro–1H–purin–2,6–diona, y se determinó su actividad antitiroidea en ratas, tras la administración de una dosis diaria de 20 mg/kg a través de inyección intraperitoneal durante 15 días. Las concentraciones de tiroxina y triyodotironina libres se determinaron utilizando la técnica de radioinmunoensayo. Los resultados de los ensayos mostraron una disminución en las concentraciones hormonales de los animales tratados con estos compuestos en comparación con los animales control. Del mismo modo, el nivel de la hormona estimulante de la tiroides se midió con el método ELISA y los resultados demostraron un aumento comparativo de esta hormona en los animales tratados. Las variaciones hormonales indicaron actividad significativa (α < 0.05) de los compuestos. El estudio histológico de los tejidos de la tiroides de los animales de laboratorio mostró cambios celulares en los animales tratados, tales como la forma cilíndrica del epitelio folicular, la reducción en los valores de coloide y elevación de los índices del cuerpo tiroideo. Todos estos factores confirman también los efectos antitiroideos de los compuestos en estudio.

Palabras clave: 8–Sulfanil–3,9–dihidro–1H–purin–2,6–dione, derivados, actividad antitiroidea, hormonas tiroideas, histología.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Trzepacz, P. T.; Klein, I.; Roberts, M.; Greenhouse, J.; Levey, G. S. Am. J. Med. 1989, 87, 558–561.         [ Links ]

2. Cooper, D. S. Endo. Metab. Clin. North Am. 1998, 27, 225–247.         [ Links ]

3. Raby, C.; Lagorce, J. F.; Jambut–Absil, A. C.; Buxeraud, J.; Catanzano, G., Endocrinol. 1990, 126, 1683–1691.         [ Links ]

4. Buxeraud, J.; Jambut–Absil, A. C.; Raby, C. J. Pharm. Sci. 1984, 73, 1687–1690.         [ Links ]

5. Bandyopadhyay, U.; Biswas, K.; Banerjee, R. K. Toxicol. Lett. 2002, 128, 117–127.         [ Links ]

6. Jambut–Absil, A. C.; Buxeraud, J.; Claude, J.; Raby, C. Fr. Arzneimittel–Forschung 1987, 37, 772–777.         [ Links ]

7. Abou–Shaaban Rafiq, R. A.; Al–Khamees, H. A.; Abou–Auda, H. S.; Simonelli, A. P. Saudi Pharm. J. 1995, 3, 156–175.         [ Links ]

8. Dalton, M. E.; Pegg, A. E. Clin.Cancer. Res. 1997, 3, 837–847.         [ Links ]

9. Hahn, H.; Boop, M. Biol. Unserer. Zeit. 1981, 11, 113–120.         [ Links ]

10. Jacobson, K. A.; Van Galen, P. J. M.; Williams, M. J. Med. Chem. 1992, 35, 407–422.         [ Links ]

11. Mann, F. G.; Porter, J. W. G. J. Chem. Soc. 1945, 751–760.         [ Links ]

12. Fatima, I.; Munawar, M. A., Khan, M. A.; Sohail, N.; Amjad, R. Acta Cryst. 2009, E65, 02994.         [ Links ]

13. Sariri, R.; Khalili, G. Russ. J. Org. Chem. 2002, 38, 1053–1055.         [ Links ]

14. Loo, T. L.; Marvin, E.; Arthur, J.; Garceau, J.; Reid, C. J. Am.Chem. Soc. 1959, 81, 3039–3041.         [ Links ]

15. Lagorce, J. F.; Comby, F.; Rousseau, A.; Buxeraud, J.; Raby, C. Chem. Pharm. Bull. 1993, 41, 1258–1260.         [ Links ]

16. Shamsipur, M.; Mashhadizadeh, M. H. J. Inc. Phenom. Macrocycl. Chem. 2000, 38, 277–286.         [ Links ]

17. Fatima, I.; Munawar, M. A.; Khan, M. A.; Asmatullah; Tasneem, A.; Khalil, M. J. Braz. Chem. Soc. 2010, 21, 1699–1703.         [ Links ]

18. Bergmann, F.; Gorvin, H. K.; Waron, H. U.; Kalmus, A. Biochem, J. 1963, 86, 567–574.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License