SciELO - Scientific Electronic Library Online

vol.52 issue1The Role of the Linearity on the Hydrogen Bond in the Formamide Dimer: a BLYP, B3LYP, and MP2 StudyEquilibrium Constants Determination of the Species Formation in the Al(III)-H2O System by Integration of 27Al-NMR Signals and Fitting with Species Fractions author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Journal of the Mexican Chemical Society

Print version ISSN 1870-249X

J. Mex. Chem. Soc vol.52 n.1 México Jan./Mar. 2008




Mechanism and Kinetics of the OH• Radical Reaction with Formaldehyde Bound to an Si(OH)4 Monomer


Cristina Iuga, Rodolfo Esquivel Olea, and Annik Vivier–Bunge


Departamento de Química, Universidad Autónoma Metropolitana, Iztapalapa, México, D.F., México. Email:


Recibido el 3 de octubre del 2007
Aceptado el 25 de enero del 2008



In this work, quantum chemical methods are used to study the reaction of OH· radicals with formaldehyde bound to the Si(OH)4 monomer, as a model for silica mineral aerosols. The potential energy surfaces for the formaldehyde interaction with the surface model have been carefully spanned, and minima and maxima were evaluated. Both the H–abstraction and OH–addition paths are shown to be complex reactions, which involve the formation of a reactant complex in the entrance channel and a product complex in the exit channel. In the main reaction channel, formaldehyde binds to the silanol groups and then reacts with OH free radicals to form a water molecule and a bound formyl radical. We show that the rate constant for the H–abstraction reaction is an order of magnitude smaller when formaldehyde is bound to Si(OH)4 than in the gas phase, while the rate constant for the addition reaction is still about five orders of magnitude smaller. Thus, the branching ratio between abstraction and addition is not significantly altered in the presence of the silicate surface model.

Key words: Mineral aerosols, radical reactions, silica surface model, formaldehyde, OH radicals, rate constants.



En este trabajo, se utilizan métodos de la química cuántica para estudiar la reacción de radicales OH con formaldehído adsorbido sobre Si(OH)4, como modelo de superficie para representar aerosoles de silicatos minerales. Se evalúan mínimos y máximos en las superficies de energía potencial para la interacción de formaldehído con la superficie modelo. Las reacciones correspondientes a la abstracción de hidrógeno y a la adición del radical OH son complejas, y ambas involucran la formación de un complejo pre–reactivo en el inicio del camino de reacción, así como un complejo de productos después del estado de transición. En la reacción más importante, que corresponde a la abstracción de un hidrógeno del formaldehído, éste se une a grupos silanol de la superficie modelo, y posteriormente reacciona con radicales libres OH para formar una molécula de agua libre y un radical formilo anclado a la superficie. Se muestra que la constante de velocidad de la abstracción de hidrógeno es un orden de magnitud menor que para la misma reacción en fase gas, mientras que la de la adición es aproximadamente cinco órdenes de magnitud más pequeña. De acuerdo con este modelo, la proporción entre abstracción y adición no se altera significativamente en presencia de un aerosol mineral.

Palabras clave: Aerosoles minerales, reacciones radicalarias, superficie modelo de silicatos, formaldehído, radicales OH, constantes de velocidad.





The authors are grateful to CONACYT Project No. SEP–2004–C01–46167–Q and to the PIFI 3.3 program for financial support. We also thank Professors W. T. Duncan, R. L. Bell and T. N. Truong for providing the Rate program through Internet.



1. Usher, C. R.; Michel, A. E.; Grassian, V. H. Chem. Rev. 2003, 103, 4883–4939.         [ Links ]

2. Dentener, F. J.; Carmichael G. R.; Zhang Y. J. Geophys. Res. 1996, 101, 22869–22889.         [ Links ]

3. Bian, H. S.; Zender, C. S. J. Geophys. Res. 2003, 108, 4672.         [ Links ]

4. Ravishankara, A. R. Science 1997, 276, 1052–1058.         [ Links ]

5. S. Oh; J. M. Andino Atm. Environ. 2002, 36, 149–156.         [ Links ]

6. M. Sørensen; M. D. Hurley; T. J. Wallington; T. S. Dibble; O. J. Nielsen. Atm. Environ. 2002, 36, 5947–5952.         [ Links ]

7. Carlos–Cuellar, S.; Li, P.; Christensen, A. P.; Krueger, B. J.; Burrichter, C.; Grassian, V. H. J. Phys. Chem. A 2003, 107, 4250–4261.         [ Links ]

8. Atkinson, R. J. Phys. Chem. Ref. Data 1994, Monograph 2, 1.         [ Links ]

9. Tyndall, G. S.; Orlando, J. J.; Wallington, T.; Hurley, M. D.; Goto, M.; Kawasaki, M. Phys. Chem. Chem. Phys. 2002, 4, 2189–2193.         [ Links ]

10. Vandenberk, S.; Peeters, J. J. Photochem. Photobiol. A 2003, 157, 269–274.         [ Links ]

11. Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data 1997, 26, 521–1011.         [ Links ]

12. DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J., JPL–PUBL–92–20; NAS 1.26192795; NASA–CR– 192795.         [ Links ]

13. Alvarez–Idaboy, J. R.; Mora–Diez, N.; Boyd, R. J.; Vivier–Bunge, A. J. Am. Chem. Soc. 2001, 123, 2018–2024.         [ Links ]

14. Aloisio, S.; Francisco, J. S. J. Phys. Chem. A 2000, 104, 3211–3224.         [ Links ]

15. Gutmann, V. In The Donor–Acceptor Approach to Molecular 1nteractions; Plenum Press, New York, 1978.         [ Links ]

16. Gutmann, V.; Resch, G.; Linert, W. Coord. Chem. Rev. 1982, 43, 133–164.         [ Links ]

17. Bronnimann. C. E.; Zeigler, R. C.; Maciel, G. E. J. Am. Chem. Soc. 1988, 110, 2023–2026.         [ Links ]

18. Morrow. B. A.; Gay, I. D. J. Phys. Chem. 1988, 92, 5569–5571.         [ Links ]

19. Legrand, A. P.; Hommel, H.; Taibi, H.; Miquel, J. L.; Tougne, P. Colloid Surf. 1990, 45, 391–411.         [ Links ]

20. Leonardelli. S.; Facchini, L.; Fretigny, C.; Tougne. P.; Legrand, A. P. J. Am. Chem. Soc. 1992, 114, 6412–6418.         [ Links ]

21. Hoffman, P.; Knozinger, E. Surface Sci. 1987, 188, 181–198.         [ Links ]

22. McFarlan, A. J.; Morrow, B. A. J. Phys. Chem. 1991, 95, 5388–5390.         [ Links ]

23. Knozinger, H. In The hydrogen bond, Vol. 111, Schuster, P.; Zundel, G.; Sandorfy, C., Eds., North–Holland: Amsterdam 1976; 1263, and references therein.         [ Links ]

24. Her, R. K. In The chemistry of silica; Wiley–Interscience: New York 1979; Chapter 6.         [ Links ]

25. Kiselev, A. V.; Lygin, V. I. In lnfrared spectra of surface compounds; Wiley: New York, 1975.         [ Links ]

26. Heanry, P. J.; Prewitt, C. T.; Gibbs, G. V. In Silica, Physical Behavior, Geochemistry and Materials Applications; Ribbe, P. H., Ed.; Reviews in Mineralogy, Vol. 29; Mineralogical Society of America: Washington, D.C., 1994; 331.         [ Links ]

27. Sauer, J.; Ugliengo, P.; Garrone, E.; Saunders, V.R. Chem. Rev. 1994, 94, 2095–2160.         [ Links ]

28. Xin, L.; Qianer, Z.; Lin, M. C. Phys. Chem. Chem. Phys. 2001, 3, 2156–2161.         [ Links ]

29.Sauer, J.; Ugliengo, P.; Garrone, E.; Saunders, V. R. Chem. Rev. 1994, 94, 2095–2160.         [ Links ]

30. Ugliengo, P.; Saunders, V. R.; Garrone, E. Chem. Phys. Lett. 1990, 169, 501–508.         [ Links ]

31. Busca, G.; Lamotte, J.; Lavalley, J. C.; Lorenzelli, V. J. Am. Chem. Soc. 1987, 109, 5197–5202.         [ Links ]

32. Sauer, J.; Schrader, K. P. Phys. Chem. Leipzig 1985, 266, 379.         [ Links ]

33. Pelmenschikov, A. G.; Morosi, G.; Gamba, A. J. Phys. Chem. 1992, 96,7422–7424.         [ Links ]

34. Sauer, J. J. Phys. Chem. 1987, 91, 2315–2319.         [ Links ]

35. Ugliengo, P.; Garrone, E., J. Mol. Catal. 1989, 54, 439–443.         [ Links ]

36. Ugliengo, P.; Saunders, V. R.; Garrone, E. J. Phys. Chem. 1989, 93, 521.         [ Links ]

37. Garrone, E.; Ugliengo, P. Mater Chem. Phys. 1991, 29, 287–296.         [ Links ]

38. Civalleri, B.; Garrone, E.; Ugliengo, P. Chem. Phys. Lett. 1998, 294, 103–108.         [ Links ]

39. Pereira, J. C. G.; Catlow, C. R. A.; Price, G. D. J. Phys. Chem. A 1999, 103, 3268–3284.         [ Links ]

40. Becke, A. D. J. Chem. Phys. 1993, 98, 1372–1377.         [ Links ]

41. Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Frisch, M. J.; Frisch, A. GAUSSIAN 98 User's Reference; Gaussian Inc.: Pittsburgh, PA, 1998.         [ Links ]

42. Gaussian 03 (Revision A.1), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J., Keith, T.; Al–Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc., Pittsburgh, PA, 2004.         [ Links ]

43. Galano, A.; Alvarez–Idaboy, J. R.; Ruiz–Santoyo M. E.; Vivier–Bunge, A. J. Phys. Chem. A 2002, 106, 9520–9528.         [ Links ]

44. Galano, A.; Alvarez–Idaboy, J. R.; Bravo–Pérez G.; Ruiz–Santoyo, M. E., Phys. Chem. Chem. Phys. 2002, 4, 4648–4662.         [ Links ]

45. Mayer, I. Int. J. Quantum. Chem. 1983, 23, 341–363.         [ Links ]

46. Mayer, I. J. Phys. Chem. 1996, 100, 6332–6335.         [ Links ]

47. Frisch, M. J.; Del Bene, J. E.; Binkley, J. S.; Schaefer III, H. F.; J. Chem. Phys. 1986, 84, 2279–2289.         [ Links ]

48. Schwenke, D. W.; Truhlar, D. G. J. Chem. Phys. 1985, 82, 2418–2426.         [ Links ]

49. T. H. Dunning, Jr. J. Phys. Chem. A 2000, 104, 9062–9080.         [ Links ]

50. Eyring, H., J. Chem. Phys., 1935, 3, 107–115.         [ Links ]

51. Truhlar, D. G.; Hase W. L.; Hynes, J. T., J. Phys. Chem., 1983, 87, 2264–2267.         [ Links ]

52. Duncan, W. T.; Bell, R. L.; Truong, T. N., J. Comput. Chem. 1998, 19, 1039–1052.         [ Links ]

53. Singleton, D. L.; Cvetanovic, R. J., J. Am. Chem. Soc. 1976, 98, 6812–6819.         [ Links ]

54. Pilling, M. J.; Seakins, P. W. Reaction Kinetics, Oxford University Press, New York, 1996.         [ Links ]

55. Laidler, K. J., Chemical Kinetics, ed. Harper Collins Publishers, 1987, p. 98.         [ Links ]

56. Jacox, M. E. Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules, Vol. 69, NIST: Gaithersburg, MD, 1998, 945.         [ Links ]

57. The NIST Chemical Kinetics Data Base, NIST Standard Reference Database; U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology: Gaithersburg, MD, 17–2Q98.         [ Links ]

58. Guggenheim, S.; Chang, Y.–H.; Koster van Gross, A.F. American Mineralogist, 1987, 72, 537–550.         [ Links ]

59. Lee, J. H.; Guggenheim S. American Mineralogist, 1981, 66, 350–357.         [ Links ]

60. Knozinger, H. In The Hydrogen Bond; Vol III, Schuster, P., Zundel, G., Sandorfy, C., Eds.; North–Holland: Amsterdam, 1976, 1263; and reference therein.         [ Links ]

61. Curthoys, G.; Davydov, V. Ya; Kiselev, A. V.; Kiselev, S. A.; Kuznetsov, B. V. J. Colloid Interface Sci. 1974, 48, 58–72.         [ Links ]

62. Truong, T. N.; Truhlar, D. G. J. Chem. Phys. 1990, 93, 1761–1769.         [ Links ]

63. Tiee, J. J.; Wampler, F. B.; Oldenborg, R. C.; Rice, W. W. Chem. Phys. Lett. 1981, 82, 80–84.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License