SciELO - Scientific Electronic Library Online

 
vol.13 issue3Energy based reliable multicast routing protocol for packet forwarding in MANETEfficient data transfer in mobile ad-hoc network using OPSM for disaster response applications author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of applied research and technology

On-line version ISSN 2448-6736Print version ISSN 1665-6423

J. appl. res. technol vol.13 n.3 Ciudad de México Jun. 2015

 

Articles

 

Development of an axial suspended AMB experimental bench for load and disturbance tests

 

R. Gouws

 

School of Electrical, Electronic and Computer Engineering, North-West University, Potchefstroom, South Africa. E-mail address: rupert.gouws@nwu.ac.za

 

Abstract

This paper provides the development of an axial suspended active magnetic bearing (AMB) experimental bench for load and disturbance tests. This test bench must be capable of levitating a 2 kg steel disc at a stable working distance of 3 mm and a maximum attraction distance of 6 mm. The suspension is accomplished by two electromagnets producing upward and downward attraction forces to support the steel disc. An inductive sensor measures the position of the steel disc and relays this to a PC based controller board (dSPACE® controller). The control system uses this information to regulate the electromagnetic force on the steel disc. The intent is to construct this system using relatively low-cost, low-precision components, and still be able to stably levitate the 2 kg steel disc with high precision. The dSPACE® software (ControlDesk®) was used for data acquisition. In this paper, an overview of the system design is presented, followed by the axial AMB model design, inductive sensor design, actuating unit design and controller development and implementation. The paper concludes with results obtained from the dSPACE® controller and evaluation of the axial suspended AMB experimental bench with load and disturbance tests.

Keywords: Active magnetic bearings; Control systems engineering; dSPACE® control; Electromagnetics; Inductive sensor; Magnetic levitation.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Ahrens, M., Kucera, L., & Larsonneur, R. (1996). Performance of a magnetically suspended flywheel energy storage device. IEEE Transactions on Control Systems Technology, 4, 494-502.         [ Links ]

Allaire, P.E., & Maslen, E.H. (1997). Introduction to magnetic bearings. Charlottesville: Mech. Aero. Eng. Dept., University of Virginia.         [ Links ]

Allaire, P., & Sinha, A. (1998). Robust sliding mode control of a planar rigid rotor system on magnetic bearings. In Procedures of the 6th International Symposium on Magnetic Bearings (Massachusetts) (pp. 577-586).         [ Links ]

Alaire, P., & Knospe, C.P. (1997). Short course on magnetic bearings. Alexandria, Virginia.         [ Links ]

Antsaklis, P.J., & Gao, Z. (2005). Control System Design. In: The Electronics Engineers' Handbook, (pp. 19.1-19.30). 5th Ed. New York: McGraw-Hill.         [ Links ]

Arias-Montiel, M., Silva-Navarro, G., & Antonio-García, A. (2014). Active Vibration Control in a Rotor System by an Active Suspension with Linear Actuators. Journal of Applied Research and Technology, 12, 898-907.         [ Links ]

Bianchi, G., & Sorrentino, R. (2007). Electronic filter simulation & design (pp. 17-20). New York: McGraw-Hill Professional.         [ Links ]

Chapman, M.G., & McEachen, J.A. (1957). Cardiac contusion caused by the use of a jackhammer. American Heart Journal, 54, 625-627.         [ Links ]

Ciocirlan, B.O., Marghitu, D.B., Beale, D.G., & Overfelt, R.A. (1998). Dynamics and fuzzy control of a levitated particle. Nonlinear Dynamics, 17, 61-76.         [ Links ]

Djouadi, S.M., & Tsiotras, P. (1999). H∞ Control Design for a Simplified Model of a Magnetic Bearing/Rotor System. NASA and AFS Inc. Internal Report, March.         [ Links ]

Gouws, R. (2012). Impact of frequency switching on the efficiency of a fully suspended active magnetic bearing system. International Journal of Physical Science, 7, 3073-3081.         [ Links ]

Gouws, R. (2013). Active magnetic bearing condition monitoring. World Journal of Engineering, 10, 179-188.         [ Links ]

Gouws, R. (2013). Energy Management by means of SMD Model Analysis for AMB Systems with Eccentricity. International Journal of New Trends in Electronics and Communication (IJNTEC), 3, 14-19.         [ Links ]

Gouws, R. (2013). Energy Management by Means of Fault Conditions on Active Magnetic Bearing Systems. International Journal of Emerging Trends in Electrical and Electronics, 8, 35-38.         [ Links ]

Hurley, W., & Wolfle, W.H. (1997). Electromagnetic design of a magnetic suspension system. IEEE Transactions on Education, 40, 124-130.         [ Links ]

Kasarda, M.E.F. (2000). An Overview of Active Magnetic Bearing Technology and Applications. The Shock and Vibration Digest, 32, 91-99.         [ Links ]

Khoo, W.K.S., Kalita, K., Garvey, S.D., Hill-Cottingham, R.J., Rodger, D., & Eastham, J.F. (2010). Active axial-magnetomotive force parallel-airgap serial flux magnetic bearings. IEEE Transactions on Magnetics, 46, 2596-2602.         [ Links ]

Mendoza-Bárcenas, M.A., Vicente-Vivas, E., & Rodríguez-Cortés, H. (2014). Mechatronic Design, Dynamic Modeling and Results of a Satellite Flight Simulator for Experimental Validation of Satellite Attitude Determination and Control Schemes in 3-Axis. Journal of Applied Research and Technology, 12.         [ Links ]

Pretorius, J.H.C. (1982). A three dimensional magnetic bearing for high speed rotors (Dissertation). Johannesburg: M.S.C., RAU.         [ Links ]

Ritonja, J., Polajzer, B., & Dolinar, D. (2006). Decentralized control for active magnetic bearings. In: Power Electronics and Motion Control Conference, 2006. EPE-PEMC 2006. 12th International (pp. 1413-1418). IEEE.         [ Links ]

Saruhan, H., Saridemir, S., C.icek, A., & Uygur, 1. (2014). Vibration Analysis of Rolling Element Bearings Defects. Journal of Applied Research and Technology, 12.         [ Links ]

Sawant, J., & Ginoya, D. (2010). dSPACE DSP DS-1104 based state observer design for position control of DC servo motor, dSPACE User Conf. 2012, India, 24 Sep.         [ Links ]

Scherpen, J.M.A., Van der Kerk, B., Klaassens, J.B., Lazeroms, M., & Kan, S.Y. (1998). Nonlinear control for magnetic bearings in deployment test rigs: Simulation and experimental results, IEEE Conference on Decision and Control, Tampa, Florida (pp. 2613-2618).         [ Links ]

Schweitzer, G., Traxler, A., & Bleuler, H. (1993). Magnetlager, grundlagen, eigenschaften und anwendungen berührungsfreier, elektromagnetischer Lager. Berlin: Springer Verlag.         [ Links ]

Shitole, A., & Gopalakrishnan, D.N. (2012). dSPACE (DS-1104) Implementation of Detection and Control Algorithm of Dynamic Voltage Restorer (DVR). In: dSPACE User Conference.         [ Links ]

Sinha, P.K. (1987). Electromagnetic Suspension Dynamics & Control. IEEE Control Engineering Series, 30.         [ Links ]

Subramanian, S., George, T., & Thondiyath, A. (2012). dSPACE DS-1104 based real-time verification of 3D collision avoidance for autonomous underwater vehicles. dSPACE User Conf. 2012, India, 14 Sep.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License