SciELO - Scientific Electronic Library Online

 
vol.13 issue2Real time non-rigid surface detection based on binary robust independent elementary featuresCombined grey prediction fuzzy control law with application to road tunnel ventilation system author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of applied research and technology

On-line version ISSN 2448-6736Print version ISSN 1665-6423

J. appl. res. technol vol.13 n.2 Ciudad de México Apr. 2015

 

Study on real-time extension fault detection for a XXY stage by using chaos synchronization

 

Chin-Tsung Hsieh, Her-Terng Yau*, Huo-Cheng Lin

 

Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung, Taiwan. *Corresponding author. E-mail address: pan1012@ms52.hinet.net

 

Abstract

This paper proposes the chaos synchronization-based XXY stage real-time extension fault detection; the main characteristic signal is extracted by filtering from the microvibration of stage. The chaos synchronization systems are used to extract the dynamical map of chaotic synchronization error. The Eigen value is extracted from the centroid value of phase plane plot, and the value is analyzed by extension theory, so as to determine the state of XXY stage. The stage states can be detected by the PC based real-time analysis; there are four fault statuses, including normal, X1 motor fault, X2 motor fault and Y motor fault. The dSPACE is used for signal acquisition and monitoring interface making. The real-time fault monitoring and diagnosis can be implemented at the computer side.

Keywords: Chaos synchronization; XXY stage; Real-time; Extension theory.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Arjona, M.A., Gonzalez, C., & Hernandez, C. (2011). Development of a synchronous-generator experimental bench for standstill time-domain tests. Journal Applied Research and Technology, 9, 117-128.         [ Links ]

Barrón-Meza, M.A. (2010). Vibration analysis of a self-excited elastic beam. Journal Applied Research and Technology, 8, 227-239.         [ Links ]

De Luca, A., & Dominguez, H. (2011). Design of a high precision testbed of an inspection system for detecting fine defects in PCBs (pp. 1-5). Merida City: 8th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE).         [ Links ]

Ebrahimi, B.M., & Faiz, J. (2012). Magnetic field and vibration monitoring in permanent magnet synchronous motors under eccentricity fault. IET Electr. Power Appl., 6, 35-45.         [ Links ]

Gong, X., Qiao, W. (2012). Imbalance fault detection of direct-drive wind turbines using generator current signals. IEEE Trans. Energy Convers., 27, 468-476.         [ Links ]

Gong, X., & Qiao, W. (2013). Bearing fault diagnosis for direct-drive wind turbines via current-demodulated signals. IEEE Trans. Ind. Electron., 60, 3419-3428.         [ Links ]

Huang, C.H., Lin, C.H., & Kuo, C.L. (2011). Chaos synchronization-based detector for power-quality disturbances classification in a power system. IEEE Trans. Power Deliv., 26, 944-953.         [ Links ]

Immovilli, F., Cocconcelli, M., Bellini, A., & Rubini, R. (2009). Detection of generalized-roughness bearing fault by spectral-kurtosis energy of vibration or current signals. IEEE Trans. Ind. Electron., 56, 4710-4717.         [ Links ]

Ishigaki, T., Higuchi, T., & Watanabe, K. (2010). Fault detection of a vibration mechanism by spectrum classification with a divergence-based kernel. IET Signal Process., 4, 518-529.         [ Links ]

Lee, H.W., Liu , C.H., Chiu, Y.Y., & Fang, T.H. (2012). Design and control of an optical alignment system using a parallel XXY stage and four CCDs for micro pattern alignment (pp. 13-17). Cannes: 2012 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP).         [ Links ]

Lin, F.J., & Shieh, P.H. (2006). Recurrent RBFN-based fuzzy neural network control for X-Y-® motion control stage using linear ultrasonic motors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, 2450-2464.         [ Links ]

Lorenz, E.N. (1963). Deterministic nonperiodic flows. Atmospheric Sciences, 20, 130-148.         [ Links ]

Martins, J.F., Pires, V.F., & Pires, A.J. (2007). Unsupervised neural-network-based algorithm for an on-line diagnosis of three-phase induction motor stator fault. IEEE Trans. Ind. Electron., 54, 259-264.         [ Links ]

Mohanty, A.R., & Kar, C. (2006). Fault detection in a multistage gearbox by demodulation of motor current waveform. IEEE Trans. Ind. Electron., 53, 1285-1297.         [ Links ]

Posadas-Castillo, C., Cruz-Hernández, C., & Núnez-Pérez, R. (2005). Experimental realization of binary signals transmission based on synchronized Lorenz circuits. Journal Applied Research and Technology, 2, 127-137.         [ Links ]

Rivas, E., Burgos, J.C., & Garcia-Prada, J.C. (2010). Vibration analysis using envelope wavelet for detecting faults in the OLTC tap selector. IEEE Trans. Power Deliv., 25, 1629-1636.         [ Links ]

Tan, W.W., & Huo, H. (2005). A generic neurofuzzy model-based approach for detecting faults in induction motors. IEEE Trans. Ind. Electron., 52, 1420-1427.         [ Links ]

Teotrakool, K., Devaney, M.J., & Eren, L. (2009). Adjustable-speed drive bearing-fault detection via wavelet packet decomposition. IEEE Trans. Instrum. Meas., 58, 2747-2754.         [ Links ]

Wang, M.H. (2004). Application of extension theory to vibration fault diagnosis of generator sets. IET Gener. Transm. Distrib., 151, 503-508.         [ Links ]

Watson, S.J., Xiang, B.J., Yang, W., Tavner, P.J., & Crabtree , C.J. (2010). Condition monitoring of the power output of wind turbine generators using wavelets. IEEE Trans. Energy Convers., 25, 715-721.         [ Links ]

Yang, W., Tavner, P.j., Crabtree, C.J., & Wilkinson, M. (2010). Cost-effective condition monitoring for wind turbines. IEEE Trans. Ind. Electron., 57, 263-271.         [ Links ]

Zhang, Z., Verma, A., & Kusiak, A. (2012). Fault analysis and condition monitoring of the wind turbine gearbox. IEEE Trans. Energy Convers., 27, 526-535.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License