SciELO - Scientific Electronic Library Online

 
vol.12 número4A Parameter Free BBN Discriminant Function for Optimum Model Complexity versus Goodness of Data FittingApplication of Different Algorithms to Optimal Design of Canal Sections índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of applied research and technology

versão On-line ISSN 2448-6736versão impressa ISSN 1665-6423

J. appl. res. technol vol.12 no.4 Ciudad de México Ago. 2014

 

Hybrid Non-Blind Watermarking Based on DWT and SVD

 

O. Jane*1, E. Elbaşi2 and H. G. ilk3

 

1 The Scientific and Technological Research Council of Turkey (TUBITAK), Ankara, Turkey. *onur.jane@tubitak.gov.tr

2 Ipek University, Department of Animation Ankara, Turkey.

3 Ankara University, Department of Electrical and Electronics Engineering, Ankara, Turkey.

 

ABSTRACT

Watermarking is identified as a major technology to achieve copyright protection and multimedia security. Therefore, recent studies in literature include some evident approaches for embedding data into a multimedia element. Because of its useful frequency component separation, the Discrete Wavelet Transform (DWT) is commonly used in watermarking schemes. In a DWT-based scheme, the DWT coefficients are modified with the data that represents the watermark. In this paper, we present a hybrid non-blind scheme based on DWT and Singular Value Decomposition (SVD). After decomposing the cover image into four sub bands (LL, HL, LH and HH), we apply the SVD to LL band and modify diagonal singular value coefficients with the watermark itself by using a scaling factor. Finally, LL band coefficients are reconstructed with modified singular values and inverse DWT is applied to obtain watermarked image. Experimental results show that the proposed algorithm is considerably robust and reliable. In comparison to the previous literature, peak signal-to-noise ratio (PSNR) values of watermarked images are increased by approximately 20%. In terms of PSNR values before and after attacks and of normalized similarity ratio (NSR); although watermark is embedded into LL sub band; our proposed method gives much more satisfactory results on filtering, scaling, Gaussian, JPEG compression, rotation and cropping than that of previous literature.

Keywords: Digital image watermarking, discrete wavelet transform, singular value decomposition, peak signal-to-noise ratio, normalized similarity ratio, non-blind watermarking, multimedia security.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Morasso, P. Spatial control arm movements. Exp. Brain Res., Vol. 42, pp. 223-227 (1981).         [ Links ]

[2] Flash, T. and Hogan, N. The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci., Vol. 5, pp. 1688-1703 (1985).         [ Links ]

[3] Uno, Y., Kawato, M., and Suzuki, R. Formation and control of optimal trajectory in human multijoint arm movements. Biol. Cybern., Vol. 61, pp. 89-101 (1989).         [ Links ]

[4] Crossman, E.R. F.W. and Goodeve, P.J. Feedback control of handmovements and Fitts law. Q.J. Exp. Psychol., Vol. A35, pp. 251-278 (1983).         [ Links ]

[5] Gielen, C.C., Vrijenhock, E.J., and Neggers, S.F. Arm position constraints during pointing and reaching in 3-D space. J. Neurophysiol., Vol. 78, pp. 660-673 (1997).         [ Links ]

[6] Goldvasser, D., McGibbon, C.A., and Krebs, D.E. High curvature and jerk analyses of arm ataxia. Biol. Cybern., Vol. 84, pp. 85-90 (2001).         [ Links ]

[7] Novàk, K.E., Miller, L.E., and Houk, J.C. Kinematic properties of rapid hand movements in a knob turning task. Exp. Brain Res., Vol. 132, pp. 419-433 (2000).         [ Links ]

[8] Viviani, P. and Schneider, R.A. development study of the relationship between geometry and kinematics in drawing movements. J. Exp. Psychol. Hum. Percept. Perform., Vol. 17, pp. 198-218 (1991).         [ Links ]

[9] Viviani, P. and Flash, T. Minimum-jerk, two-thirds power law, and isochrony: converging approaches tomovement planning. J. Exp. Psychol. Hum. Percept. Perform., Vol. 21, pp. 32-53 (1995).         [ Links ]

[10] Panjabi, M.M., White, A.A. Basic biomechanics of the spine. Neurosurgery, Vol. 7, pp. 76-93 (1980).         [ Links ]

[11] Dimnet, J., Pasquet, A., Krag, M.H., Panjabi, M.M. Cervical spine motion in the sagittal plane: Kinematic and geometric parameters. Journal of Biomechanics, Vol. 15, pp. 959-969 (1982).         [ Links ]

[12] Gracovetsky, S., Farfan, H. The optimum spine. Spine, Vol. 11, pp. 543 (1986).         [ Links ]

[13] Cholewicki, J., McGill, S.M. Lumbar spine kinematics obtained from video fluoroscopy. Journal of Biomechanics, Vol. 25, pp. 801 (1992).         [ Links ]

[14] Yoganandan, N., Pintar, F., Maiman, D.J., Reinartz, J., Sances, A., Larson, S.J., Cusick, J.F. Kinematics of the lumbar spine following pedicle screw plate fixation. Spine, Vol. 18, pp. 504-512 (1993).         [ Links ]

[15] Levin, S.M. The importance of soft tissue for structural support of the body. In Dorman, T.A., editor. Prolotherapy in the lumbar spine and pelvis,         [ Links ] Spine: State of the art reviews, Vol. 9, pp. 357 (1995).         [ Links ]

[16] Willems J.M., Jull G.A., Ng, J.K.F. An in vivo study of the primary and coupled rotations of the thoracic spine. Clinical Biomechanics, Vol. 11, pp. 311-316, (1996).         [ Links ]

[17] Faber, M.J., Schamhardt, H.C., van Weeren, P.R. Determination of 3D spinal kinematics without defining a local vertebral coordinate system. Journal of Biomechanics, Vol. 32, pp. 1355-1358 (1999).         [ Links ]

[18] Yoshikawa, H., Ishii, T., Mukai, Y., Hosono, N., Sakaura, H., Nakajima, Y., Sato, Y., Sugamoto, K. Kinematics of the upper cervical spine in rotation: In vivo three-dimensional analysis. Spine, Vol. 29, pp. E139-E144 (2004).         [ Links ]

[19] Ziddiqui, M., Karadimas, E., Nicol, M., Smith, F.W., Wardlaw, D. Effects of X-stop device on sagittal lumbar spine kinematics in spinal stenosis. Journal of Spinal Disorden Technology, Vol. 19, pp. 328-333 (2006).         [ Links ]

[20] Ishii, T., Mukai, Y., Hosono, N., Sakaura, H., Fujii, R., Nakajima, Y., Tamura, S., Iwasaki, M., Yoshikawa, H., Sugamoto, K. Kinematics of the cervical spine in lateral bending: In vivo three-dimensional analysis. Spine, Vol. 31, pp. 155-160 (2006).         [ Links ]

[21] Konz, R.J., Fatone, S., Stine, R.L., Ganju, A., Gard, S.A., Ondra, S.L.A. kinematic model to assess spinal motion during walking. Spine, Vol. 31, pp. E898-E906 (2006).         [ Links ]

[22] Chanceya, V.C., Ottaviano, D., Myers, B.S., Nightingale, R.W. A kinematic and anthropometric study of the upper cervical spine and the occipital condyles. Journal of Biomechanics, Vol. 40, pp. 1953-1959 (2007).         [ Links ]

[23] Gill, K.P., Bennett, S.J., Savelsbergh, G.J.P., van Dieen, J.H. Spine, Vol. 32, pp. 1599-1604 (2007).         [ Links ]

[24] Jones, M., Holt, C., Franyuti, D. Developing a methodology for the analysis of infant spine kinematics for the investigation of the shaken baby syndrome. Journal of Biomechanics, Vol. 41, pp. S3-55 (2008).

[25] Zhu, S.J., Huang, Z., Zhao, M.Y. Feasible Human-Spine Motion Simulators Based on Parallel Manipulators Source: Parallel Manipulators, Towards New Applications, Book edited by: Huapeng Wu, ISBN 978-3902613-40-0, pp. 506, I-Tech Education and Publishing, Vienna, Austria (2008).         [ Links ]

[26] Innocenti, C, Parenti-Castelli, V. Direct position analysis of the Stewart platform mechanism. Mechanism and Machine Theory, Vol. 35, pp. 611-621 (1990).         [ Links ]

[27] Tsai, L.W. Robot analysis, John Wiley & Sons, (1999).         [ Links ]

[28] Gallardo-Alvarado, J., Rodríguez-Castro, R., Nazrul Islam, Md. Analytical solution of the forward position analysis of parallel manipulators that generate 3-RS structures. Advanced Robotics, Vol. 22, pp. 215-234 (2008a).         [ Links ]

[29] Gallardo-Alvarado, J., Aguilar-Nájera, C.R., Casique-Rosas, L., Pérez- González, L., Rico-Martínez, J.M. Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory. Multibody System Dynamics, Vol. 20, pp. 307325 (2008b).         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons