SciELO - Scientific Electronic Library Online

 
vol.12 issue3Time Course Changes in pH, Electrical Conductivity and Heavy Metals (Pb, Cr) of Wastewater Using Moringa oleifera Lam. Seed and Alum, a Comparative EvaluationEffect of Heat Flux on Creep Stresses of Thick-Walled Cylindrical Pressure Vessels author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of applied research and technology

On-line version ISSN 2448-6736Print version ISSN 1665-6423

J. appl. res. technol vol.12 n.3 Ciudad de México Jun. 2014

 

Implementation of a Computational Model for Information Processing and Signaling from a Biological Neural Network of Neostriatum Nucleus

 

C. Sánchez-Vázquez*1, M. Ávila-Costa2 and F. Cervantes-Pérez3

 

1,2 Laboratorio de Neuromorfología Experimental y Aplicada. Facultad de Estudios Superiores Iztacala. Universidad Nacional Autónoma de México, México, D. F. *csvm@unam.mx

3 Universidad Abierta y a Distancia de México, México, D. F., México.

 

ABSTRACT

Recently, several mathematical models have been developed to study and explain the way information is processed in the brain. The models published account for a myriad of perspectives from single neuron segments to neural networks, and lately, with the use of supercomputing facilities, to the study of whole environments of nuclei interacting for massive stimuli and processing. Some of the most complex neural structures -and also most studied- are basal ganglia nuclei in the brain; amongst which we can find the Neostriatum. Currently, just a few papers about high scale biological-based computational modeling of this region have been published. It has been demonstrated that the Basal Ganglia region contains functions related to learning and decision making based on rules of the action-selection type, which are of particular interest for the machine autonomous-learning field. This knowledge could be clearly transferred between areas of research. The present work proposes a model of information processing, by integrating knowledge generated from widely accepted experiments in both morphology and biophysics, through integrating theories such as the compartmental electrical model, the Rall's cable equation, and the Hodking-Huxley particle potential regulations, among others. Additionally, the leaky integrator framework is incorporated in an adapted function. This was accomplished through a computational environment prepared for high scale neural simulation which delivers data output equivalent to that from the original model, and that can not only be analyzed as a Bayesian problem, but also successfully compared to the biological specimen.

Keywords: Safety Stock, Guaranteed-service time, Dynamic Programming, Automotive Industry.

 

RESUMEN

Recientemente se han desarrollado modelos matemáticos que permiten explicar y definir a través de la ingeniería la manera como se procesa la información de señales eléctricas producidas por iones en el sistema nervioso de los seres vivos. Se han diseñado numerosas propuestas de este tipo de lo discreto a lo masivo, que operan como segmentos de una neurona, una red, y en últimas fechas con ayuda del supercómputo, hasta conjuntos de núcleos que interactúan en entornos de estímulos y procesamiento a gran escala. De las estructuras neurales más complejas y de más interés ha sido la del grupo denominado de los Ganglios Basales, de los que el Neoestriado forma parte, y sobre el cual se han hecho pocos trabajos de modelado computacional. Se ha demostrado que en esta región residen funciones de aprendizaje, y otras relacionadas con la toma de decisiones bajo las reglas de acción-selección que son ampliamente estudiadas en el aprendizaje autónomo computacional, permitiendo transferir el conocimiento de un campo de investigación a otro. El presente trabajo propone un modelo computacional en tiempo real, a través de integrar el conocimiento obtenido de experimentos ampliamente aceptados en biofísica, aplicando la teorías de compartimientos electrónicos, de la ecuación de cable de Rall, las leyes de potencial de partículas Hodkgin-Huxley, entre otros. Dichos modelos se incorporan en un entorno basado en la función de integrador con fugas, a través de un ambiente computacional de simulación neural a gran escala, que entrega una salida de datos equivalente al modelo biológico, susceptible a ser analizada como un problema Bayesiano, y comparada con el espécimen biológico con éxito.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgment

The author thank Posgrado en Ciencias Biologicas of National University of Mexico for the received formation during his postgraduate studies. This work was supported by PAPCA-Iztacala UNAM-2014-2015, and PAPIIT-DGAPA UNAM IN215114 grants.

 

References

[1] A.E. Bryson, "Optimal control 1950 to 1980," IEEE Control Systems, vol. 13, no., pp. 26-33, 2006.         [ Links ]

[2] J.C. Rietschel, R.N. Goodman, B.R. King, L. Lo, J.L. Contreras-Vidal and B.D. Hatfield, "Cerebral cortical dynamics and the quality of motor behavior during social evaluative challenge," Psychophysiology, vol. 48, no. 4, pp. 479-487, Apr, 2011.         [ Links ]

[3] Y. Zhang, K. Chen, M. Baron, M.A. Teylan, Y. Kim, Z. Song, P. Greengard and S.T.C. Wong, "A neurocomputational method for fully automated 3d dendritic spine detection and segmentation of medium-sized spiny neurons," Neuroimage, vol. 50, no. 4, pp. 1472-1484, May, 2010.         [ Links ]

[4] A.K. Waljee and P.D.R. Higgins, "Machine learning in medicine: a primer for physicians," Am. J. Gastroenterol., vol. 105, no. 6, pp. 1224-1226, Jun, 2010.         [ Links ]

[5] J. Bower and D. Beeman. Special issue on realistic neural modeling, 2005.         [ Links ]

[6] J.L. Contreras-Vidal, S. Grossberg and D. Bullock, "A neural model of cerebellar learning for arm movement control: cortico-spino-cerebellar dynamics," Learn. Mem., vol. 3, no. 6, pp. 475-502, Mar-Apr, 1997.         [ Links ]

[7] S. Pérez, M. Garcés, C. Cabiedes and V. Miranda, "Electronic model of a dubois fuzzy integration neuron," Journal of Applied Research and Technology, vol. 7, no, pp. 73-82, 2009.         [ Links ]

[8] M. Bañuelos-Saucedo, J. Castillo-Hernández, S. Quintana-Thierry, S. Damián-Zamacona, Valeriano-Assem, R. Cervantes, R. Fuentes-González, G. Calva-Olmos and J. Pérez-Silva, "Implementation of a neuron model using fpgas," Journal of Applied Research and Technology, vol. 1, no. , pp. 248-255, 2003.         [ Links ]

[9] R.E. Suri and W. Schultz, "A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task," Neuroscience, vol. 91, no., pp. 871-870, 1999.         [ Links ]

[10] S. Wen, A. Ulloa, F. Husain, B. Horwitz and J.L. Contreras-Vidal, "Simulated neural dynamics of decision-making in an auditory delayed match-to-sample task," Biol Cybern, vol. 99, no. 1, pp. 15-27, Jul, 2008.         [ Links ]

[11] R.E. Suri, J. Bargas and M.A. Arbib, "Modeling functions of striatal dopamine modulation in learning and planning," Neuroscience, vol. 103, no. 1, pp. 65-85, 2001.         [ Links ]

[12] J. Cuevas-Tello, R. González-Grimaldo, O. Rodríguez-González, H. Pérez-González and O. Vital-Ochoa, "Parallel approach for time series analysis with general regression neural networks," Journal of Applied Resarch and Technology, vol. 10, no. , pp. 162-179, 2012.         [ Links ]

[13] I. Abnizova, A.G. Rust, M. Robinson, R. Te Boekhorst and W.R. Gilks, "Transcription binding site prediction using markov models," J Bioinform Comput Biol, vol. 4, no. 2, pp. 425-441, Apr, 2006.         [ Links ]

[14] G.E. Alexander and M.D. Crutcher, "Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey," J. Neurophysiol., vol. 64, no. 1, pp. 164-178, Jul, 1990.         [ Links ]

[15] C.H. Bailey and E.R. Kandel, "Synaptic remodeling, synaptic growth and the storage of long-term memory in aplysia," Prog. Brain Res., vol. 169, no., pp. 179-198, 2008.         [ Links ]

[16] J.C. Houk. Informacion processing in modular circuits linking basal ganglia and cerebral cortex.. In Models of information processing in de basal ganglia. James C. Houk, Joel L. Davis, and David G. Beiser (Ed.). 1998. pp. 3-9.         [ Links ]

[17] J.S. Dittman and W. G. Regehr, "Mechanism and kinetics of heterosynaptic depression at a cerebellar synapse," J. Neurosci., vol. 17, no. 23, pp. 9048-9059, Dec, 1997.         [ Links ]

[18] T. Shultz, C. Hansen and T. Shultz, "Response to use of bootstrap procedure and monte carlo simulation," J. Nutr., vol. 130, no. 10, p. 2619, Oct, 2000.         [ Links ]

[19] A.G. Barto, "Reinforcement learning control," Curr. Opin. Neurobiol., vol. 4, no. 6, pp. 888-893, Dec, 1994.         [ Links ]

[20] A.G. Barto, "Learning by statistical cooperation of self-interested neuron-like computing elements," Hum Neurobiol, vol. 4, no. 4, pp. 229-256, 1985.         [ Links ]

[21] G. Ma de G.R.J.R.A.O.E.G.A.J and L.S, "Acceleration of association-rule based markov decision processes," Journal of Applied Research and Technology, vol. 7, no. , pp. 354-375, 2009.         [ Links ]

[22] D. Burfoot, M. Lungarella and Y. Kuniyoshi, "Thoward a theory of embodied satatistical learning," Lecture Notes Of Computer Science, vol. 10, no. , pp. 270-279, 2008.         [ Links ]

[23] D. Joel, Y. Niv and E. Ruppin, "Actor-critic models of the basal ganglia: new anatomical and computational perspectives," Neural Netw, vol. 15, no. 4-6, pp. 535-547, Jun-Jul, 2002.         [ Links ]

[24] M. Grosse-Wentrup and J. L. Contreras-Vidal, "The role of the striatum in adaptation learning: a computational model," Biol Cybern, vol. 96, no. 4, pp. 377-388, Apr, 2007.         [ Links ]

[25] J. Brown, D. Bullock and S. Grossberg, "How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues," J. Neurosci., vol. 19, no. 23, pp. 10502-10511, Dec, 1999.         [ Links ]

[26] E. Wiesendanger, S. Clarke, R. Kraftsik and E. Tardif, "Topography of cortico-striatal connections in man: anatomical evidence for parallel organization," Eur. J. Neurosci., vol. 20, no. 7, pp. 1915-1922, Oct, 2004.         [ Links ]

[27] Shultz, W., Apicella, P, Romo, R Scarnati, E. Context-dependente activity in primate striatum reflecting past and future behavioral events. In Models of information processing in de basal ganglia. James C. Houk, Joel L. Davis, and David G.Beiser (Ed.). 1998. pp. 10-27.         [ Links ]

[28] C.C. Wilson, "The basal ganglia," in The synaptic organization of the brain, ed, Oxford University Press, New York , 2004, ch. 9, pp. 361-413.         [ Links ]

[29] R.E. Suri, "Td models of reward predictive responses in dopamineneurons," Neural Networks, vol. 15, no., pp., 2002.         [ Links ]

[30] R. Suri, C. Albani and A. Hlatfelder, "A dynamic model of motor basal ganglia functions," Biological Cybernetics, vol. 76, no., pp. 451-458, 1997.         [ Links ]

[31] Sutton, R.S. Barto, A.G, "Toward a modern theory of adaptive networks: expectation and prediction," Psychol Rev, vol. 88, no. 2, pp. pp. 135-170, Mar, 1981.         [ Links ]

[32] E. Aimeur and C. Frasson, "Analyzing a new learning strategy according to different knowledge levels.," Computers Educ, vol. 27, no., pp. 115-127, 1996.         [ Links ]

[33] Niv Yael, "Reinforcement learning in the brain," Journal of Mathematical Psychology, vol. 53, no., pp. 139-154, 2009.         [ Links ]

[34] H. E. Atallah, D. Lopez-Paniagua, J.W. Rudy and R.C. O'Reilly, "Separate neural substrates for skill learning and performance in the ventral and dorsal striatum," Nat. Neurosci., vol. 10, no. 1, pp. 126-131, Jan, 2007.         [ Links ]

[35] I. Bar-Gad and H. Bergman, "Stepping out of the box: information processing in the neural networks of the basal ganglia," Curr. Opin. Neurobiol., vol. 11, no. 6, pp. pp. 689-695, Dec, 2001.         [ Links ]

[36] F. Worgotter and B. Porr, "Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms," Neural Comput, vol. 17, no. 2, pp. 245-319, Feb, 2005.         [ Links ]

[37] C. A. Thorn, H. Atallah, M. Howe and A. M. Graybiel, "Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning," Neuron, vol. 66, no. 5, pp. 781-795, Jun, 2010.         [ Links ]

[38] W. Ridell, F. Gravetter and W. Rogers, "Further investigation of the relationship between brain indices and learning," Physiology and Behavior, vol. 17, no., pp. 231-274, 1976.         [ Links ]

[39] S. Crook, D. Beeman, P. Gleeson and F. Howell, "Xml for model specification in neuroscience," Brains, Minds, and Media, vol. 1, no., pp. bmm228, 2005.         [ Links ]

[40] A.M. Graybiel, "The basal ganglia," Trends Neurosci., vol. 18, no. 2, pp. 60-62, Feb, 1995.         [ Links ]

[41] A. Parent and L.N. Hazrati, "Functional anatomy of the basal ganglia. I. the cortico-basal ganglia-thalamo-cortical loop," Brain Res. Brain Res. Rev., vol. 20, no. 1, pp. 91-127, Jan, 1995.         [ Links ]

[42] A. Parent and L.N. Hazrati, "Functional anatomy of the basal ganglia. II. the place of subthalamic nucleus and external pallidum in basal ganglia circuitry," Brain Res. Brain Res. Rev., vol. 20, no. 1, pp. 128-154, Jan, 1995.         [ Links ]

[43] A. Parent, "Extrinsic connedions of the basal ganglia," TINS, vol. 13, no., pp. 254-258, 1990.         [ Links ]

[44] E.S. Nisenbaum and C.J. Wilson, "Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons," J. Neurosci., vol. 15, no. 6, pp. 4449-4463, Jun, 1995.         [ Links ]

[45] E.S. Nisenbaum, C.J. Wilson, R.C. Foehring and D.J. Surmeier, "Isolation and characterization of a persistent potassium current in neostriatal neurons," J. Neurophysiol., vol. 76, no. 2, pp. 1180-1194, Aug, 1996.         [ Links ]

[46] Y. Park and K. Kim, "Short-term plasticity of small synaptic vesicle (ssv) and large dense-core vesicle (ldcv) exocytosis," Cell. Signal., vol. 21, no. 10, pp. pp. 1465-1470, Oct, 2009.         [ Links ]

[47] C.J. Wilson and Y. Kawaguchi, "The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons," J. Neurosci., vol. 16, no. 7, pp. 2397-2410, Apr, 1996.         [ Links ]

[48] J. Bargas, E. Galarraga and J. Aceves, "An early outward conductance modulates the firing latency and frequency of neostriatal neurons of the rat brain," Exp Brain Res, vol. 75, no. 1, pp. 146-156, 1989.         [ Links ]

[49] A.E. Pollack, "Anatomy, physiology, and pharmacology of the basal ganglia," Neurol Clin, vol. 19, no. 3, pp. p. 523-34, v, Aug, 2001.         [ Links ]

[50] A.A. Utter and M.A. Basso, "The basal ganglia: an overview of circuits and function," Neurosci Biobehav Rev, vol. 32, no. 3, pp. pp. 333-342, 2008.         [ Links ]

[51] M. DeLong and T. Wichmann, "Update on models of basal ganglia function and dysfunction," Parkinsonism Relat. Disord., vol. 15 Suppl 3, no., pp. p. 5237-40, Dec, 2009.         [ Links ]

[52] R.L. Albin, A.B. Young and J.B. Penney, "The functional anatomy of basal ganglia disorders," Trends Neurosci., vol. 12, no. 10, pp. 366-375, Oct, 1989.         [ Links ]

[53] C.F. Orr, D.B. Rowe and G.M. Halliday, "An inflammatory review of parkinson's disease," Prog Neurobiol, vol. 68, no. 5, pp. 325-340, Dec, 2002.         [ Links ]

[54] H. Takahashi and K. Wakabayashi, "The cellular pathology of parkinson's disease," Neuropathology, vol. 21, no. 4, pp. 315-322, Dec, 2001.         [ Links ]

[55] E.C. Hirsch, "How to judge animal models of parkinson's disease in terms of neuroprotection," J. Neural Transm. Suppl., vol., no. 70, pp. 255-260, 2006.         [ Links ]

[56] J.C. Houk and S.P. Wise, "Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action," Cereb. Cortex, vol. 5, no. 2, pp. 95-110, Mar-Apr, 1995.         [ Links ]

[57] Y. Kawaguchi, "Neostriatal cell subtypes and their functional roles," Neurosci. Res., vol. 27, no. 1, pp. 1-8, Jan, 1997.         [ Links ]

[58] V.M. André, C. Cepeda, D.M. Cummings, E.L. Jocoy, Y.E. Fisher, X. William Yang and M.S. Levine, "Dopamine modulation of excitatory currents in the striatum is dictated by the expression of d1 or d2 receptors and modified by endocannabinoids," Eur. J. Neurosci., vol. 31, no. 1, pp. 14-28, Jan, 2010.         [ Links ]

[59] K. Gurney, T. J. Prescott and P. Redgrave, "A computational model of action selection in the basal ganglia. i. a new functional anatomy," Biol Cybern, vol. 84, no. 6, pp. 401-410, Jun, 2001.         [ Links ]

[60] B. D. Bennett and C. J. Wilson, "Spontaneous activity of neostriatal cholinergic interneurons in vitro," J. Neurosci., vol. 19, no. 13, pp. 5586-5596, Jul, 1999.         [ Links ]

[61] C.J. Wilson, "Passive cable properties of dendritic spines and spiny neurons," J. Neurosci., vol. 4, no. 1, pp. 281-297, Jan, 1984.         [ Links ]

[62] P. Pakhotin and E. Bracci, "Cholinergic interneurons control the excitatory input to the striatum," J. Neurosci., vol. 27, no. 2, pp. 391-400, Jan, 2007.         [ Links ]

[63] C.J. Wilson and J.A. Goldberg, "Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons," J. Neurophysiol., vol. 95, no. 1, pp. 196-204, Jan, 2006.         [ Links ]

[64] O. Ibáñez-Sandoval, F. Tecuapetla, B. Unal, F. Shah, T. Koós and J.M. Tepper, "Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum," J. Neurosci., vol. 30, no. 20, pp. 6999-7016, May, 2010.         [ Links ]

[65] C.J. Wilson and P.M. Groves, "Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase," J. Comp. Neurol., vol. 194, no. 3, pp. 599-615, Dec, 1980.         [ Links ]

[66] T. Prescott, M. Fernando, G. Kevin, H. Mark and R. Peter, "A robot model of the basal ganglia: behavior and intrinsic processing," Neural Networks, vol. 19, no., pp. 31-61, 2006.         [ Links ]

[67] Z. Nenadic and B. K. Ghosh, "Encoding and decodin of analog signals with a population of neurons," Math Comp Mod, vol. 39, no., pp. 181-196, 2004.         [ Links ]

[68] R.C. O'Reilly and M.J. Frank, "Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia," Neural Comput, vol. 18, no. 2, pp. 283-328, Feb, 2006.         [ Links ]

[69] Bower, J. Beeman, D. Special issue on realistic neural modeling, 2005.         [ Links ]

[70] A. Hodgkin and A. Huxley, "Propagation of electrical signals along giant nerve fibers," Proc. R. Soc. Lond., B, Biol. Sci., vol. 140, no. 899, pp. 177-183, Oct, 1952.         [ Links ]

[71] A. Hodgkin and A. Huxley, "A quantitative description of membrane current and its application to conduction and excitation in nerve," J. Physiol. (Lond.), vol. 117, no. 4, pp. 500-544, Aug, 1952.         [ Links ]

[72] A. Hodgkin and A. Huxley, "The dual effect of membrane potential on sodium conductance in the giant axon of loligo," J. Physiol. (Lond.), vol. 116, no. 4, pp. 497-506, Apr, 1952.         [ Links ]

[73] A. Hodgkin and A. Huxley, "The components of membrane conductance in the giant axon of loligo," J. Physiol. (Lond.), vol. 116, no. 4, pp. 473-496, Apr, 1952.         [ Links ]

[74] A. Hodgkin and A. Huxley, "Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo," J. Physiol. (Lond.), vol. 116, no. 4, pp. 449-472, Apr, 1952.         [ Links ]

[75] J. Edgerton, "Simulating in vivo-like synaptic input patterns in multicompartmental models," Brains, Minds and Media, vol. 1, no., pp. p. bmm225, 2005.         [ Links ]

[76] W. Rall, "Time constant and electrotonic lenght of membrane cilynders and neurons," Biophysics, vol. 9, no. , pp. 1483-1508, 1969.         [ Links ]

[77] W. Rall. Cable theory for neurons. In Handbook of physiology: the nervous system. Kandel, J, Hrookhard, M (Ed.). 1977. pp. 39-98.         [ Links ]

[78] Y. Thuboshita and O. Hiroshi, "Context-dependent retrieval of information by neural-network dynamics with continuous attractors," Neural Networks, vol. 20, no., pp. 705-713, 2007.         [ Links ]

[79] F. Pongracz, "The function of dendritic spines: a theoretical study," Neuroscience, vol. 15, no. 4, pp. 933-946, Aug, 1985.         [ Links ]

[80] M. Bota and M.A. Arbib, "Integrating databases and expert systems for the analysis of brain structures: connections, similarities, and homologies," Neuroinformatics, vol. 2, no. 1, pp. 19-58, 2004.         [ Links ]

[81] A. L. HODGKIN, "A note on conduction velocity," J. Physiol. (Lond.), vol. 125, no. 1, pp. 221-224, Jul, 1954.         [ Links ]

[82] Z. Qi, G.W. Miller and E.O. Voit, "The internal state of medium spiny neurons varies in response to different input signals," BMC Syst Biol, vol. 4, no., pp. 26, 2010.         [ Links ]

[83] B. Dulam-Banawa, A. Marin-Sanguino and E. Mendoza, "The evolution of synapse models—from numbers to networks to spaces," Pharmacopsychiatry, vol. 43 Suppl 1, no., pp. S42-9, May, 2010.         [ Links ]

[84] M. Arbib. The handbook of brain theory and neural networks. In . M. Arbib (Ed.). 1995. pp. 4-11.

[85] W. Yamada, C. Kock and P. Adams. Multiple channels and calcium dynamics. In Methods on neuronal modeling. C. Koch and Segev I (Eds.). 1989. pp. 97-134.         [ Links ]

[86] K. Gurney, T.J. Prescott and P. Redgrave, "A computational model of action selection in the basal ganglia. II. analysis and simulation of behaviour," Biol Cybern, vol. 84, no. 6, pp. 411-423, Jun, 2001.         [ Links ]

[87] K.N. Gurney, "Information processing in dendrites II. information theoretic complexity," Neural Netw, vol. 14, no. 8, pp. 1005-1022, Oct, 2001.         [ Links ]

[88] N. Ray and A.P. Strafella, "Dopamine, reward, and frontostriatal circuitry in impulse control disorders in parkinson's disease: insights from functional imaging," Clin EEG Neurosci, vol. 41, no. 2, pp. 8793, Apr, 2010.         [ Links ]

[89] J. Barral, E. Galarraga, D. Tapia, E. Flores-Barrera, A. Reyes and J. Bargas, "Dopaminergic modulation of spiny neurons in the turtle striatum," Cell. Mol. Neurobiol., vol., no., pp. Feb, 2010.         [ Links ]

[90] H. Zhang, E.W. Rodgers, W.C. Krenz, M.C. Clark and D.J. Baro, "Cell specific dopamine modulation of the transient potassium current in the pyloric network by the canonical d1 receptor signal transduction cascade," J. Neurophysiol., vol., no , pp., Jun, 2010.         [ Links ]

[91] W. Schultz, "Subjective neuronal coding of reward: temporal value discounting and risk," Eur. J. Neurosci., vol., no. , pp., May, 2010.         [ Links ]

[92] G. Hood, "Using p-genesis for parallel simulation of genesis models," Brains, Minds and Media, vol. 1, no., pp. bmm227, 2005.         [ Links ]

[93] M. Hines and N. Carnevale, "Recent developments in neuron," Brains, Minds and Media, vol. 1, no. , pp. bmm221, 2005.         [ Links ]

[94] R. Goering, "Matlab edges closer to electronic design automation world," in , ed, 2004, ch, pp.

[95] T.E. Hazy, M.J. Frank and R.C. O'Reilly, "Neural mechanisms of acquired phasic dopamine responses in learning," Neurosci Biobehav Rev, vol. 34, no. 5, pp. 701-720, Apr, 2010.         [ Links ]

[96] C.R. Gerfen, "The neostriatal mosaic: multiple levels of compartmental organization," Trends Neurosci., vol. 15, no. 4, pp. 133-139, Apr, 1992.         [ Links ]

[97] Z. Qi, G.W. Miller and E.O. Voit, "Computational modeling of synaptic neurotransmission as a tool for assessing dopamine hypotheses of schizophrenia," Pharmacopsychiatry, vol. 43 Suppl 1, no., pp. S50-60, May, 2010.         [ Links ]

[98] J.M. Tepper, F. Tecuapetla, T. Koós and O. Ibáñez-Sandoval, "Heterogeneity and diversity of striatal gabaergic interneurons," Front Neuroanat, vol. 4, no., pp. 150, 2010.         [ Links ]

[99] B. Ben D, C. Joseph C and W. Charles J, "Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons," Journal of Neuroscience, vol. 15, no., pp. 8493-8503, 2000.         [ Links ]

[100] Y. Kawaguchi, C.J. Wilson and P.C. Emson, "Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs," J. Neurophysiol., vol. 62, no. 5, pp. 1052-1068, Nov, 1989.         [ Links ]

[101] D.J. Surmeier, J. Bargas and S.T. Kitai, "Two types of a-current differing in voltage-dependence are expressed by neurons of the rat neostriatum," Neurosci. Lett., vol. 103, no. 3, pp. 331-337, Sep, 1989.         [ Links ]

[102] J. Bargas, E. Galarraga and J. Aceves, "Electrotonic properties of neostriatal neurons are modulated by extracellular potassium," Exp Brain Res, vol. 72, no. 2, pp. 390-398, 1988.         [ Links ]

[103] J. M. Tepper, C. J. Wilson and T. Koós, "Feedforward and feedback inhibition in neostriatal gabaergic spiny neurons," Brain Res Rev, vol. 58, no. 2, pp. 272-281, Aug, 2008.         [ Links ]

[104] C. Lettieri, S. Rinaldo, G. Devigili, G. Pauletto, L. Verriello, R. Budai, L. Fadiga, A. Oliynyk, M. Mondani, S. D'Auria, M. Skrap and R. Eleopra, "Deep brain stimulation: subthalamic nucleus electrophysiological activity in awake and anesthetized patients," Clin Neurophysiol, vol., no., pp., Jun, 2012.         [ Links ]

[105] T. Koos, J. M. Tepper and C. J. Wilson, "Comparison of ipscs evoked by spiny and fast-spiking neurons in the neostriatum," J. Neurosci., vol. 24, no. 36, pp. 7916-7922, Sep, 2004.         [ Links ]

[106] M. Littel, A.S. Euser, M.R. Munafó and I.H.A. Franken, "Electrophysiological indices of biased cognitive processing of substance-related cues: a meta-analysis," Neurosci Biobehav Rev, vol. , no. , pp. , May, 2012.         [ Links ]

[107] G. Alexander and M. Crutcher, "Functional architecture of basal ganglia circuits: neural substrates of parallel processing," Trends Neurosci., vol. 13, no. 7, pp. 266-271, Jul, 1990.         [ Links ]

[108] G.F. Mitchell, "Clinical achievements of impedance analysis," Med Biol Eng Comput, vol. 47, no. 2, pp. 153-163, Feb, 2009.         [ Links ]

[109] D.Z. Jin, N. Fujii and A.M. Graybiel, "Neural representation of time in cortico-basal ganglia circuits," Proc. Natl. Acad. Sci. U.S.A., vol. 106, no. 45, pp. 19156-19161, Nov, 2009.         [ Links ]

[110] D. Jaeger, "Realistic single cell modeling - from experiment to simulation," Brains, Minds and Media, vol. 1, no. , pp. bmmm222, 2005.         [ Links ]

[111] D. Choquet, "Fast ampar trafficking for a high-frequency synaptic transmission," Eur. J. Neurosci., vol., no. , pp., Jul, 2010.         [ Links ]

[112] D.X.G.B.K and U.P., "Encoding and decodign target locations with waves in the turtle visual cortex," IEEE trans. Biomed. Eng., vol. 52, no. , pp. 566577, 2005.         [ Links ]

[113] T.J. Prescott, F.M. Montes González, K. Gurney, M.D. Humphries and P. Redgrave, "A robot model of the basal ganglia: behavior and intrinsic processing," Neural Netw, vol. 19, no. 1, pp. 31-61, Jan, 2006.         [ Links ]

[114] R.B. Gillespie, J.L. Contreras-Vidal, P.A. Shewokis, M.K. O'Malley, J.D. Brown, H. Agashe, R. Gentili and A. Davis, "Toward improved sensorimotor integration and learning using upper-limb prosthetic devices," Conf Proc IEEE Eng Med Biol Soc, vol. 2010, no., pp. 5077-5080, 2010.         [ Links ]

[115] C.H. Bailey, M. Giustetto, Y.Y. Huang, R.D. Hawkins and E.R. Kandel, "Is heterosynaptic modulation essential for stabilizing hebbian plasticity and memory?," Nat. Rev. Neurosci., vol. 1, no. 1, pp. 1120, Oct, 2000.         [ Links ]

[116] J.M. Fellous and C. Linster, "Computational models of neuromodulation," Neural Comput, vol. 10, no. 4, pp. 771-805, May, 1998.         [ Links ]

[117] G.A. Carpenter, S. Grossberg and J.H. Reynolds, "A fuzzy artmap nonparametric probability estimator for nonstationary pattern recognition problems," IEEE Trans Neural Netw, vol. 6, no. 6, pp. 1330-1336, 1995.         [ Links ]

[118] Beierlein M, Gibson JR, Connors BW. Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol. 2003;90:2987-3000.         [ Links ]

[119] Silberberg G, Markram H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron. 2007;53:735-746.         [ Links ]

[120] Kapfer C., Glickfeld LL., Atallah BV., Scanziani M. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat Neurosci. 2007;10:743-753.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License