SciELO - Scientific Electronic Library Online

 
vol.11 issue1A Method with Node Autonomy to Preserve QoS in Networks with Per-Route AdmissionCurrent Transformer Saturation Detection Using Gaussian Mixture Models author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of applied research and technology

On-line version ISSN 2448-6736Print version ISSN 1665-6423

J. appl. res. technol vol.11 n.1 Ciudad de México Feb. 2013

 

The Euler-Poincaré Formula Through Contact Surfaces of Voxelized Objects

 

H. Sánchez-Cruz*1, H. Sossa-Azuela2, U-D. Braumann3,4, E. Bribiesca5

 

1 Centro de Ciencias Básicas Universidad Autónoma de Aguascalientes. Aguascalientes, Ags. México, * hsanchez@correo.uaa.mx

2 Centro de Investigación en Computación Instituto Politécnico Nacional. México, D. F., México.

3 lnterdisziplinäres Zentrum für Bioinformatik Universität Leipzig, Leipzig, Germany.

4 Institut für Medizinische Informatik, Statistik und Epidmiologie, Universität Leipzig, Leipzig, Germany.

5 Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas. UNAM. D.F., México.

 

ABSTRACT

Two new versions of the Euler-Poincaré formula are proposed considering two new defined cuboids: the tetra-voxel and the octo-voxel, without losing information on the number of vertices and edges. The well-known relationship between contact and enclosing surface concepts, as well as the relationships between vertices, edges and enclosing surfaces, allowed us to compute an innovative algorithm for obtaining alternative versions of the Euler-Poincaré formula. This is a very important topological descriptor of 3D binary images. We considered not only topological but geometric aspects. Our method was compared to other proposals, obtaining that our proposed contact surface-based method offers more advantages.

Keywords: Euler number, Euler characteristic, Euler-Poincaré, contact surfaces, tetra-voxels, octo-voxels, edges, vertices.

 

RESUMEN

Se proponen dos nuevas versiones de la fórmula Euler-Poncaré. Para ello se consideran dos definiciones de cuboides: los tetra-voxeles y los octo-voxeles, de forma que no haya pérdida de información en el número de vértices y aristas. La conocida relación entre superficie envolvente y superficie de contacto, así como sus relaciones con los vértices y aristas, nos permitió implementar un nuevo algoritmo para obtener versiones alternativas de la fórmula Euler-Poincaré, la cual es un descriptor topológico muy importante para imágenes binarias 3D. No solamente consideramos los aspectos geométricos sino también topológicos. El método propuesto fue comparado con otros, y obtuvimos que el nuestro, basado en la superficie de contacto, ofrece mayores ventajas.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] S.B. Gray. Local Properties of Binary Images in Two Dimensions. IEEE Transactions on Computers. C-20(5) (May 1971) 551-561.         [ Links ]

[2] H.S. Yang, S. Sengupta, Intelligent shape recognition for complex industrial tasks, IEEE Control Syst. Mag. 8 (1988) 23-30.         [ Links ]

[3] J. Bogaert, P. Van Hecke, R. Ceulemans, The Euler number as an index of spatial integrity of landscapes: evaluation and proposed improvement, in: Environmental Management, Springer, New York, 2002, 673-682.         [ Links ]

[4] Ch.R. Dyer. Computing the Euler number of an image from its quadtree. Comput. Graphics Image Process. 13 (3)(1980) 270-276.         [ Links ]

[5] H. Bieri, Computing the Euler characteristic and related additive functional of digital objects from their bintree representation, Comput. Vis. Graphics Image Process. 40(1) (1987) 115-126.         [ Links ]

[6] F. Chiavetta, V. Di Gesu. Parallel computation of the Euler number via connectivity graph. Pattern Recogn. Lett. 14(11) (1993) 849-859.         [ Links ]

[7] M.H. Chen, P.F. Yan. A fast algorithm to calculate the Euler number for binary images. Pattern Recogn. Lett. 8(5) (1988) 295-297.         [ Links ]

[8] A. Bishnu, B.B. Bhattacharya, M.K. Kundu, C.A. Murthy, T. Acharya. A pipeline architecture for computing the Euler number of a binary image. J. Syst. Archit. 51(8) (2005) 470-487.         [ Links ]

[9] D. Ziou, M. Allili, Generating cubical complexes from image data and computation of the Euler number, Pattern Recogn. 35(12) (2002) 2833-2839.         [ Links ]

[10] J.L. Diaz-de-Leon, J.H. Sossa-Azuela, On the computation of the Euler Number of a binary object, Pattern Recogn. 29(3) (1996) 471-476.         [ Links ]

[11] A. McAndrew, C. Osborne. The Euler characteristic on the face-centred cubic lattice. Pattern Recognition Letters. 18 (3) (March 1997) 229-237.         [ Links ]

[12] L.G. Nonato, M.A.S. Lizier, J. Batista, M.C.F. de Oliveira, A. Castelo. Topological triangle characterization with application to object detection from images. Image and Vision Computing 26(8) (2008) 1081-1093.         [ Links ]

[13] R.T. DeHoff, E.H. Aigeltinger, K.R. Craig. Experimental determination of the topological properties of three-dimensional microstructures. J. Microsc. 95, (1972) 69-91.         [ Links ]

[14] A. Pierret, Y. Capowiez, L. Belzunces, C.J. Moran. 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma. 106 (3-4)(2002) 247-271.         [ Links ]

[15] A. Bonnassie A., F. Peyrin, D. Attali. Shape description of three-dimensional images based on medial axis, IEEE International Conference on Image Processing ICIP'01, Thessaloniki, Greece, 07-10 Oct. 931-934, 2001.         [ Links ]

[16] T. Uchiyama, T. Tanizawa, H. Muramatsu, N. Endo, H.E. Takahashi and T. Hara. Three-Dimensional Microstructural Analysis of Human Trabecular Bone in Relation to Its Mechanical Properties. Bone. 25(4) (1999) 487-491.         [ Links ]

[17] H.-J. Vogel, K. Roth. Quantitative morphology and network representation of soil pore structure. Advances in Water Resources 24(3-4) (2001) 233-242.         [ Links ]

[18] P. Lehmann, M. Berchtold, B. Ahrenholz, J. Tolke, A. Kaestner, M. Krafczyk, H. Fluhler, H.R. Kunsch. Impact of geometrical properties on permeability and fluid phase distribution in porous media. Advances in Water Resources 31 (9) (2008) 1188-1204.         [ Links ]

[19] J. Ohser, W. Nagel and K. Schladitz. The Euler Number of Discretized Sets-On the Choice of Adjacency in Homogeneous Lattices. Lecture Notes in Physics. Springer. 600 (2002) 275-298.         [ Links ]

[20] A. Velichko, C. Holzapfel, A. Siefers, K. Schladitz, F. Mucklich. Unambiguous classification of complex microstructures by their three-dimensional parameters applied to graphite in cast iron. Acta Materialia 56 (9) (2008) 1981-1990.         [ Links ]

[21] E. Bribiesca. Computation of the Euler number using the contact perimeter. Computers & Mathematics with Applications. 60 (5) (2010) 1364-1373.         [ Links ]

[22] N. Iyer, S. Jayanti, K., Yagnanarayanan Kalyanaraman, Karthik Ramani. Three-dimensional shape searching: state-of-the-art review and future trends. Computer-Aided Design 37 (5) (2005) 509-530.         [ Links ]

[23] L. Euler, "Elementa doctrinae solidorum -Demonstratio nonnullarum insignium proprietatum, quibus solida hedris planis inclusa sunt praedita", Novi comment acad. sc. imp. Petropol., 4, 1752-3, 109-140- 160.         [ Links ]

[24] H. Poincaré, Analysis Situs, Journal de l'École Polytechnique ser 2(1) (1895) 1-123.         [ Links ]

[25] V.J. Toriwaki and T. Yonekura. Euler Number and Connectivity Indexes of a Three Dimensional Digital Picture. Forma. 17 (3) (2002) 183-209.         [ Links ]

[26] V.J. Toriwaki, H. Yoshida. Fundamentals of Three-dimensional Digital Image Processing. Springer. ISBN 978-1-84800-172-5.         [ Links ]

[27] X. Lin; S. Xiang; Y. Gu. A New Approach to Compute the Euler Number of 3D Image. 3rd IEEE Conference on Industrial Electronics and Applications, 2008. Singapore 3-5 June 2008. 1543-1546.         [ Links ]

[28] P.K. Saha and B.B. Chaudhuri. 3D Digital Topology under Binary Transformation with Applications. Computer Vision and Image Understanding. 63(3) (1996) 418-429.         [ Links ]

[29] E. Bribiesca. An easy measure of compactness for 2D and 3D shapes. Pattern Recognition 41 (2) (2008) 543-554.         [ Links ]

[30] U.-D. Braumann, J.-P. Kuska, J. Einenkel, L.-C. Horn, M. Löffler, M. Höckel. Three-Dimensional Reconstruction and Quantification of Cervical Carcinoma Invasion Fronts From Histological Serial Sections. IEEE Transactions on Medical Imaging 24 (10) (2005) 1286-1307.         [ Links ]

[31] Y. Ge, V.M. Zohrabian, E.-O. Osa, J. Xu, H. Jaggi, J. Herbert, E.M. Haacke and R.I. Grossman. Diminished visibility of cerebral venous vasculature in multiple sclerosis by susceptibility weighted imaging at 3.0 Tesla. J Magn Reson Imaging. 29 (5) (2009) 1190-4.         [ Links ]

[32] H. Sanchez-Cruz and R. M. Rodriguez-Dagnino. Normalization of a 3D-Shape Similarity Measure with Voxel Representation. Computacion y Sistemas. Iberoamerican Journal of Computing. 10 (4) (2007) 372-387.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License