SciELO - Scientific Electronic Library Online

 
vol.10 número3A Multiobjective Approach for the Heuristic Optimization of Compactness and Homogeneity in the Optimal ZoningSelection of MOSFET Sizes by Fuzzy Sets Intersection in the Feasible Solutions Space índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.10 no.3 Ciudad de México dic. 2012

 

Field Experiments and Technical Evaluation of an Optimized Media Evaporative Cooler for Gas Turbine Power Augmentation

 

A. Behdashti1, M. Ebrahimpour2, B. Vahidi*2, V. Omidipour1, A. Alizadeh3

 

1 E-Man Serve co, Alvand Tower, Alikhani Boulevard, South Shiraz Ave, Tehran 1436944961, Iran.

2 Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave, Tehran 1591634311, Iran. *E-mail: vahidi@aut.ac.ir

3 Kerman Power Generation co, Abbaspour Boulevard, Kerman 7614651187, Iran.

 

ABSTRACT

This paper discusses an optimized media type evaporative cooling system called Outdoor Movable Media cooler which has been recently implemented on two 160 MW, V94.2 gas turbines of Kerman combined cycle power plant, Iran. The air cooling system can be applied to retrieve the lost power generation capability of gas turbine during hot months.

System description is completely presented and optimizations such as making a movable media cooler are described. The moving ability of this system eliminates the power loss related to the conventional media coolers. Furthermore, experimental work including evaluation of humidity effect on the air filters operation is discussed and the results are presented. The cooling system performance curve shows the system capability of cooling the inlet air up to 19°C at the design condition. This cooling capacity leads to power augmentation up to 14% which is noteworthy in responding to the electricity demand in hot months, when air-conditioning loads are maximized. Considering several parameters, a cost analysis is done finally and payback period of the system is calculated.

Keywords: Evaporative cooling, gas turbine, media cooler, power augmentation.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] El-Hadik, The impact of atmospheric conditions on gas turbine performance, ASME J. Eng. Gas Turbine & Power, vol.112, no. 4, pp. 590-596, 1993.         [ Links ]

[2] Thamir K. Ibrahim, M. M. Rahman and Ahmed N., Improvement of gas turbine performance based on inlet air cooling systems: A technical review, International Journal of Physical Sciences, Vol. 6, no. 4, pp. 620-627, 2011.         [ Links ]

[3] Meher-Homji, C.B., Mee, T. R., Inlet Fogging of Gas Turbine Engines, Part A: Theory, Psychometrics and Fog Generation, Proceedings of ASME Turbo Expo, Munich, 2000.         [ Links ]

[4] Gareta, R., Romeo, L. M., Gil, A., Methodology for the economic evaluation of gas turbine air-cooling systems in combined cycle applications, J. Energy, V29, pp. 1805-1818, 2004.         [ Links ]

[5] Omidvar, B., Gas Turbine Inlet Air Cooling System, The 3rd Annual Australian Gas Turbine Conference, Melbourne, Australia, 2001.         [ Links ]

[6] Jolly, S., Sheperd, DW., Nitzken, JA., Cummings, RB., Linkous, Jr. FJ., Inlet air cooling for a frame 7EA based combined cycle power plant, Power-Gen International, pp. 1-12, 1997.         [ Links ]

[7] Sanaye, S., Fardad, A., Mostakhdemi, M., Thermoeconomic optimization of an ice thermal storage syatem for gas turbine inlet cooling, Energy, vol. 36, pp. 1057-1067, 2011.         [ Links ]

[8] Ameri, M., Hejazi, SH., Montaser, K., Performance and economic of the thermal energy storage systems to enhance the peaking capacity of the gas turbines, Appl. Then Eng., Vol.25, pp. 241-251, 2005.         [ Links ]

[9] De Lucia, M., Lanfranchi, C., Boggio, V., Benefits of compressor inlet air cooling for gas turbine cogeneration plants, Proceedings of the International Gas Turbine and Aero-engine Congress and Exposition, Houston Texas, pp. 5-8, 1995.         [ Links ]

[10] Farzaneh-Gord, M., Deymi-Dashtebayaz, M., Effect of various inlet air cooling methods on gas turbine performance energy, Energy, vol. 36 , pp. 1196-1205, 2011.         [ Links ]

[11] Johnson, R.S., The theory and operation of evaporative cooler for industrial gas turbine, J. Eng. Gas Turbine & Power, vol. 111, pp. 327-334, 1989.         [ Links ]

[12] Hosseini, R., Beshkani, A., Soltani, M., Performance improvement of gas turbines of Fars (Iran) combined cycle power plant by intake air cooling using a media evaporative cooler, Ener. Conver. Manage., vol. 48, pp. 1055-1064, 2007.         [ Links ]

[13] Beshkani, A., Hosseini, R., Numerical modeling of rigid media evaporative cooler, Appl. Ther. Eng, vol. 26, no.6, pp. 636-643, 2006.         [ Links ]

[14] Johnson, RS., Set up and operation of a recirculating wetted rigid media evaporative cooler installed in a gas turbine combustion inlet air system, International gas turbine and aero engine congress and exposition, The Hague, Netherlands, 1994.         [ Links ]

[15] Chaker, M., Meher-Homji, C. B., and Mee, T. R., Inlet Fogging of Gas Turbine Engines—Part A: Fog Droplet Thermodynamics, Heat Transfer and Practical Considerations, ASME Paper No.2002-GT-30562.         [ Links ]

[16] Chaker, M., Meher-Homji, C. B., and Mee, T. R., Inlet Fogging of Gas Turbine Engines—Part B: Fog Droplet Sizing Analysis, Nozzle Types, Measurement and Testing, ASME Paper No. 2002-GT-30563.         [ Links ]

[17] Sanaye, S., Tahani, M., Analysis of gas turbine operating parameters with inlet fogging and wet compression processes, Applied Thermal Engineering, vol. 30, pp. 234-244, 2010.         [ Links ]

[18] Chaker, M., Meher-Homji, C. B., Gas Turbine Power Augmentation: Parametric Study Relating to Fog Droplet Size and Its Influence on Evaporative Efficiency, J. Eng. Gas Turbines Power, vol. 133, 2011.         [ Links ]

[19] Farzaneh-Gord, M., Deymi-Dashtebayaz, M., A New Approach for Enhancing Performance of a Gas Turbine (case study: Khangiran Refinery), Applied Energy, vol. 86, pp. 2750-2759, 2009.         [ Links ]

[20] Farzaneh-Gord, M., Deymi-Dashtebayaz, M., Hashemi-Marghzar, Sh., Improving Efficiency of an Industrial Gas Turbine by a Novel Inlet Air Cooling Method, Journal of the Energy Institute, vol. 82, no.3, 2009.         [ Links ]

[21] MEE INDUSTRIES INC, Economic Benefits of Replacing Gas Turbine Media Based Evaporative Cooling with Inlet Fogging Systems, AN-GT-205, Rev: 1, 2002.         [ Links ]

[22] Zadpoor, A.A., Golshan, A.H., Performance improvement of a gas turbine cycle by using a desiccant-based evaporative cooling system, J. Energy., vol. 31, pp. 2652-2664, 2006.         [ Links ]

[23] Kraneis, W., The increased importance of evaporative coolers for gas turbine and combined-cycle power plants, VGB PowerTech, Munters Corp, 2000.         [ Links ]

[24] Technical specification of the project, Design, manufacturing and installation of media evaporative cooling system for 2 units of Kerman combined cycle power plant, Kerman Power Generation Company, 2010.         [ Links ]

[25] Cooling media pads catalogue, Munters corp., Available online:http://www.munters.com/upload/Relatedproductfiles/Celdek7090-English.pdf        [ Links ]

[26] ANSALDO Energia, V94.2 Gas turbine operation and maintenance manual, 30 GT Project in Iran, Vol.1, 2000.         [ Links ]

[27] Behdashti, A., Mohammadi, E., Mohammadi, A., Reduction of Gas turbines fuel consumption by means of Fog cooling system, 6th National Energy Congress, Iran, 2007.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons