SciELO - Scientific Electronic Library Online

 
vol.10 número3Image-Based Learning Approach Applied to Time Series ForecastingImproved Golden-Section Algorithm for the Multi-Item Replenishment Problem índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.10 no.3 Ciudad de México dic. 2012

 

A ZigBee Wireless Sensor Network for Monitoring an Aquaculture Recirculating System

 

Francisco J. Espinosa-Faller*, Guillermo E. Rendón-Rodríguez

 

Universidad Marista de Mérida, Periférico Norte Tablaje 13941, Mérida, Yucatán, 97300, México. *E-mail: fjespinosa@marista.edu.mx.

 

ABSTRACT

A ZigBee wireless sensor network was developed for monitoring an experimental aquaculture recirculating system. Temperature, dissolved oxygen, water and air pressure as well as electric current sensors were included in the setup. The high fish densities required in these systems to become economically viable present a case where sensor networks can be applied to preserve a healthy livestock and to reduce the risk of failures that end up in the loss of production. Modules for reading and transmitting sensor values through a ZigBee wireless network were developed and tested. The modules were installed in an aquaculture recirculating system to transmit sensor values to the network coordinator. A monitoring program was created in order to display and store sensor values and to compare them with reference limits. An alert is emitted in case reference limits have been reached. E-mail and an SMS message alert can also be sent to the cellular phone of the system administrator, so immediate action can be taken. A web interface allows Internet access to the sensor values. The present work demonstrates the applicability of ZigBee wireless sensor network technology to aquaculture recirculating systems.

Keywords: Wireless sensor networks, ZigBee, aquaculture monitoring systems.

 

RESUMEN

Se desarrolló una red de sensores inalámbrica con el protocolo ZigBee para monitorear un sistema experimental acuícola con recirculación de agua. La red incluye sensores de temperatura, oxígeno disuelto, presión de agua y aire, así como de corriente eléctrica. La alta densidad de organismos requerida para que estos sistemas sean económicamente viables nos presentan un caso donde las redes de sensores pueden ser aplicadas para preservar un stock de peces saludable reduciendo las probabilidades de fallas que conlleven pérdidas en la producción. Se desarrollaron y probaron módulos para la toma y transmisión de datos a través de una red ZigBee y se implementaron en una granja acuícola experimental. Se desarrolló un programa de monitoreo para desplegar los valores de los sensores y emitir alertas cuando se rebasen los límites de referencia especificados. Una alerta por medio de un mensaje SMS y un correo electrónico pueden ser emitidas. Una interfase WEB permite el acceso a los valores de los sensores. El presente trabajo demuestra la aplicabilidad de las redes inalámbricas ZigBee al monitoreo de sistemas acuícolas.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] N. Shnel et al., "Design and Performance of a Zero-discharge Tilapia Recirculating System", Aquacultural Eng. vol. 26, no. 3, pp. 191-203, 2002.         [ Links ]

[2] M. B. Timmons and J. E. Ebeling, "Recirculating Aquaculture". New York, Cayuga Aqua Ventures, 2007.         [ Links ]

[3] S. Han et al., "Design of Environment Monitoring System for Aquaculture Farms", Proceedings of the 2007 Frontiers in the Convergence of Bioscience and Information Technologies. Jeju Island, Korea, IEEE Comp. Sot, 2007, pp. 889-893.         [ Links ]

[4] V. C. Gungor and G. P. Hancke, "Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches". IEEE Trans. Ind. Elec., vol. 56, no.10, pp. 1265-1282, 2009.         [ Links ]

[5] F. Ding et al., "A GPS-enabled Wireless Sensor Network for Monitoring Radioactive Materials", Sensors and Actuators A, vol.155, no. 1, pp. 210-215, 2009.         [ Links ]

[6] R. Singh et al., "Pressure Monitoring in Wireless Sensor Network Using Zigbee Transceiver Module", Proceedings of the 2nd ICCCT-2011 International Conference on Computer & Communication Technology. IEEE Conf. Pub., pp. 225-229, 2011.         [ Links ]

[7] X. Zhu et al., "A Remote Wireless System for Water Quality Online Monitoring in Intensive Fish Culture", Computers and Electronics in Agriculture, vol. 71, sup. 1, pp. S3-S9, 2010.         [ Links ]

[8] M. López et al., "Wireless Monitoring of the pH, NH4+ and Temperature in a Fish Farm", Proceedings of the Eurosensors XXIII conference, Procedía Chem., vol. 1, no. 1, pp. 445-448, 2009.         [ Links ]

[9] M. López et al., "IEEE 802.15.4 Based Wireless Monitoring of pH and Temperature in a Fish Farm", Sensor Letters, vol. 7, no. 5, pp. 861-868, 2009.         [ Links ]

[10] M. F. Zhang and L. Z. Wang, "AWSN-based Monitor System for Water Quality Combined With Expert Knowledge", Proceeding of the 2011 International Conference on Electronics, Communications and Control, Ningbo, China, IEEE Conf. Pub., pp. 105-108, 2011.         [ Links ]

[11] M.L. Shan et al., "The Design of Wireless Sensor Node Based on Zigbee for Salinity Measurement". Proceeding of the 2011 International Conference on Electronics, Communications and Control, Ningbo, China, IEEE Conf. Pub., pp. 2355-2358, 2011.         [ Links ]

[12] P. Baronti et al., "Wireless Sensor Networks: A Survey on the State of the Art and the 802.15.4 and ZigBee Standards", Comp. Comm., vol. 30, no. 7, pp. 1655-1695, 2007.         [ Links ]

[13] I.F. Akyildiz et al., "Wireless Mesh Networks: a Survey". Comp. Net. vol. 47, no. 15, pp. 445-487, 2005.         [ Links ]

[14] Z. Shelby and C. Bormann, "6L0WPAN: The Wireless Embedded Internet", Hoboken, N.J., Wiley, 2010, pp.1-24.         [ Links ]

[15] S. Farahani, "ZigBee Wireless Networks and Transceivers", Newness-Elsevier, Burlington, MA, 2008. pp 329.         [ Links ]

[16] X. Zhang, "Remote Monitoring System of Textile Equipments Based on ZigBee Technology". Adv. Mat. Res. vol. 472-475, pp. 174-177, 2012.         [ Links ]

[17] X. Liu et al. "Design of the Clutch Friction Plate Temperature Acquisition System Based on Zigbee", App. Mech. and Mater, vol. 155-156, pp. 1102-1106, 2012.         [ Links ]

[18] S. Chen et al. "Analysis of the Power Consumption for Wireless Sensor Network Node Based on Zigbee". Proc. Eng.. vol. 29, pp. 1994-1998, 2012.         [ Links ]

[19] M. Terada, "Application of ZigBee Sensor Network to Data Acquisition and Monitoring", Meas. Sci. Rev., vol. 9 no.6, pp. 183-186, 2009.         [ Links ]

[20] Atmel Corp., "ZigBit™ 2.4 GHz Wireless Modules Datasheet", available from http://www.atmel.com, and "The ZigBee Specification", available from the ZigBee Alliance, http://www.zigbee.org/Specifications.aspx.         [ Links ]

[21] Atmel Corp. "Atmel BitCloud Users Guide", available from http://www.atmel.com.         [ Links ]

[22] P. Horowitz and W. Hill, "The Art of Electronics". 2nd Ed., Cambridge, UK, Cambridge University Press, 1989, pp. 351-466.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons