SciELO - Scientific Electronic Library Online

 
vol.10 issue2Parallel Approach for Time Series Analysis with General Regression Neural NetworksSelection of Soft Magnetic Core Materials Used on an LVDT Prototype author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of applied research and technology

On-line version ISSN 2448-6736Print version ISSN 1665-6423

J. appl. res. technol vol.10 n.2 Ciudad de México Apr. 2012

 

Design and Implementation of an Adjustable Speed Drive for Motion Control Applications

 

J. Rodríguez-Reséndiz*1, J. M. Gutiérrez-Villalobos1, D. Duarte-Correa1, J. D. Mendiola-Santibañez1, I. M. Santillán-Méndez1

 

1Universidad Autónoma de Querétaro, División de Estudios de Posgrado, Facultad de Ingeniería, Cerro de las Campanas s/n, 76010 Querétaro, México. *juvenal@ieee.org.

 

Abstract

In this article a hardware topology meant to compare the velocity performance of both an induction motor and a permanent magnet (PM) AC three-phase motor is presented. A variable reference is tracked by the sensorless vector-controlled adjustable speed drive (ASD) that permits, by means of the same type of control, performing the speed control loop of the two motors. The algorithms are programmed on a digital signal processor (DSP) in order to ensure efficient use of energy in the transistor bridge and proper tracking of the reference at low and high speeds. Regarding the torque performance, a laboratory test bed based on a torquemeter and two motors is constructed. The hardware implementation includes the power and the digital stages. A serial communication between the PC and the ASD is accomplished to put into operation in the user front-end because a high speed sample frequency is required for the analysis software that runs in the PC. This interface is used not only as comparing the speed response of the motors signals but also as looking the power quality analysis of each motor measurements based on software. Results are presented to demonstrate the effectiveness of the sensorless scheme.

Keywords: Signal processing, vector control, AC motors, sensorless control, torque measurement.

 

Resumen

En este artículo se presenta una topología de hardware para comparar el rendimiento de velocidad de un motor de inducción y otro de imanes permanentes (PM) de AC. A una referencia variable le sigue un variador de velocidad ajustable (ASD) con base en control vectorial sin sensores. Los algoritmos se programan en un procesador digital de señales (DSP) para asegurar el uso eficiente de energía en el puente de transistores y el seguimiento de la referencia en velocidades bajas y altas. En lo que se refiere al rendimiento de torque, se construye una mesa de pruebas de laboratorio con base en torquímetro y dos motores. La implementación incluye la etapa de hardware y software. Se lleva a cabo una comunicación serial entre la computadora y el ASD para poner en operación una interfaz debido a la alta velocidad de muestreo que requiere por el análisis en software montado en una PC. Esta interfaz se utiliza no solo para la comparación de la respuesta de ambos motores sino también para observar el comportamiento de la propuesta del controlador en este trabajo. Se presentan resultados para demostrar la efectividad del esquema sin sensores.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Mouloud A. Denai and Sid A. Attia., Fuzzy and Neural Control of an Induction Motor, Int. J. App. Math. Comput. Sci, vol. 12, No. 2, 2002, pp. 221-233.         [ Links ]

[2] Robert D. Lorenz, Thomas A. Lipo, and Donald W. Novotny., Motion Control With Induction Motors, in Proc. of IEEE, vol. 82, no. 8, Aug, 1994, pp. 1215-1240.         [ Links ] [3] Darko Herco, et al., A DSP-Based Remote Control Laboratory, IEEE Trans. on Ind. Elec., vol. 54, no. 6, Dec, 2006, pp. 3057-3068.         [ Links ]

[4] J. Rodríguez-Reséndiz, E. A. Rivas-Araiza, G. Herrera-Ruiz, "Adjustable Speed Drive Project for Teaching a Servo Systems Course Laboratory", IEEE Trans. on Edu., vol. 54, no. 4. Nov. 2011, pp. 657-666.         [ Links ]

[5] L. Harnefors, M. Jansson, R. Ottesten and K. Pietilainen, Unified Sensorless Vector Control of Synchronous and Induction Motors, IEEE Tran. Ind. Elec. vol. 50, no. 1, Feb. 2003, pp. 153-159.         [ Links ]

[6] A. M. Trzynadlowski., Field Orientation Principle in Control of Induction Motors, Kluwer Academic Publishers, 1994, pp. 176-180.         [ Links ]

[7] R. J. Wai, D. C. Liu and F.J. Lin, Rotor Time-constant Estimation Approaches Based on Energy Function and Sliding Mode for Induction Motor Drive, Elec. Pow. Sys. Res. vol. 52, Feb. 1999, pp. 229-239.         [ Links ]

[8] C. Cecati, Position Control of the Induction Motor Using a Passivity-Based Controller, IEEE Tran. Ind. App., vol. 36, no. 5, Oct. 2000, pp. 1277-1284.         [ Links ]

[9] M. A. Arjona, M. Cisneros-Gonzalez and C. Hernandez, Development of a synchronous-Generator Experimental Bench for Standstill Time-Domin Tests, J. of App. Res. and Tech., vol. 9, no. 2, Ago., 2011, pp. 117-128.         [ Links ]

[10] B. K. Bose Ed., Power Electronics and Variable Drives. Piscataway, NJ: IEEE Press 1996.         [ Links ]

[11] Q. D. Nguyen and S. Ueno, Analysis and Control of Nonsalient Permanent Magnet Axial Gap Self-Bearing Motor, IEEE Tran. Ind. Elec. vol. 58, no. 7, Jul. 2011, pp. 2644-2652.         [ Links ]

[12] M. J. Corley and R. D. Lorenz, Rotor Position and Velocity Estimation for a Salient-Pole Permanent Magnet Synchronous Machine at Standstill and High Speeds, vo. 34, no. 4, Jul. 1998, pp. 784-789.         [ Links ]

[13] J. Rodríguez-Reséndiz, F. Mendoza-Mondragón, R. A. Gómez-Loenzo, M. A. Martínez-Hernandez, I. M. Santillan-Mendez and J. D. Mendiola-Santibañez, An approach to motion control applications based on advanced programmable devices Int. J. Elect. Eng. Educ., vol. 49, Abr. 2012.         [ Links ]

[14] Rong Jong Wai and Jia Ming Chang., Intelligent Control of Induction Motor Drive Via Wavelet Neural Network, Journal of Electric Power Systems Research, vol. 61, no. 1, Feb, 2002, pp. 67-76.         [ Links ]

[15] Steve Bowling., Design And Implementation Of An Adjustable Speed Drive For Motion Control Applications R2, AN1078, Microchip Technology Inc., Europe, Mar, 2007.         [ Links ]

[16] Hyung-Min, Jang-Hwan and Seung-Ki Sul, Analysis of Multiphase Space Vector Pulse Width Modulation Based on Multiple d-q Spaces Concept, in IPEMC IEEE, vol. 3, no. 1, Aug. 2004, pp 1618 - 1624.         [ Links ]

[17] J. Rodriguez-Resendiz., et al., "Indirect Field Oriented Control of an Induction Motor Sensing DC-link Current," Proc. IEEE CERMA., vol. 1, Sep. 2008, pp. 325-331.         [ Links ]

[18] Garcia, G.O. Stephan and R.M. Watanabe., Comparing the Indirect Field-Oriented Control with a Scalar Method, IEEE Transactions on Industrial Electronics, vol. 41, no 1, Apr., 1994, pp. 201-207.         [ Links ]

[19] C. A. González-Gutierrez, J. Rodríguez-Reséndiz, G. Mota-Valtierra, E. A. Rivaz-Araiza, J. D. Mendiola-Santibañez, R. Luna-Rubio, A PC-based architecture for parameter Analysis of Vector-Controlled Induction Motor Drive, Comp. Elec. Eng. vol. 37, no. 6, Nov. 2011, pp. 858-868.         [ Links ]

[20] H. Rehman., Design of Voltage Model Flux Observer, IEE Proc. Electr. Power Appl., vol. 151, no. 2, Mar., 2004, pp 129-134.         [ Links ]

[21] A. Mezouar, M. K. Fellah and S. Hadjeri., Robust Sliding Mode Control and Flux Observer for Induction Motor Using Singular Perturbation, Journal of Electrical Engineering, vol. 89, no. 3, Jun., 2007, pp. 193-203.         [ Links ]

[22] Marko Hinkkanen, Veli-Matti Leppänen, and Jorma Luomi, Flux., Observer Enhanced With Low-Frequency Signal Injection Allowing Sensorless Zero-Frequency Operation of Induction Motors, IEEE Transaction on Industry Applications, vo. 41, no. 1 Jan., 2005, pp. 52-59.         [ Links ]

[23] J. Rodriguez-Resendiz, E. A. Rivas-Araiza, G. Herrera-Ruiz, Virtual Instrumentation for Analysis of an Adjustable Speed Drive Parameters Based on DSC", Proceedings of Texas Instruments, In European DSP in Education and Research Conference, vol. 4, no. 1, Dec., 2010, pp. 195-199.         [ Links ]

[24] Yao Chen, Yibin Tong and Xinmin Jin, A Novel Algorithm of SVPWM Harmonic Analysis Based on PWM Rectifier, Proceedings of IEEE, vol. 27, no. 13, 2007, pp. 1752-1755.         [ Links ]

[25] Woo-Cheol Lee, Taeck-Kie Lee, and Dong-Seok Hyun., Comparison of Single-Sensor Current Control in the DC Link for Three-Phase Voltage-Source PWM Converters, IEEE Transaction on Industrial Electronics, vol. 48, no. 3, Jun., 2001, pp. 491-505.         [ Links ]

[26] Hu Xuezhi and Nan Guangqun., Research of Vector Variable Frequency System Based on TMS320F2812, Intelligent Computation Technology and Automation, vol. 2, no. 1, Oct. 2008, pp. 34-38.         [ Links ]

[27] Naomitsu Urasaki, Tomonobu Senjyo, Katsumi Uezato and Toshihisa Funabashi, An Adaptative Dead-Time Compensation Strategy for Voltage Source Inverter Fed Motor Drives, IEEE Trans. On Power Elec., vol. 20, no. 5, Sep. 2005.         [ Links ]

[28] M Melfi, S. Evon and R. McElveen, Induction versus permanent magnet motors, IEEE Ind. App. Mag., vol. 15, no. 6, Oct. 2009, pp. 28-35.         [ Links ]

[29] H. A. Toliyat, L. Hao, D. S. Shet and T. A. Nondahl, Position-Sensorless Control of Surcace-Mount Permantent-Magnet AC (PMAC) Motors at Low Speeds, IEEE Tran. Ind. Elec. vol. 49, no. 1, Feb. 2002, pp. 157-164.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License