SciELO - Scientific Electronic Library Online

 
vol.10 issue1Natural Pigment-Based Dye-Sensitized Solar CellsDetermination of Phase Transition by Principal Component Analysis Applied to Raman Spectra of Polycristalline BATIO3 at Low and High Temperature author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of applied research and technology

On-line version ISSN 2448-6736Print version ISSN 1665-6423

J. appl. res. technol vol.10 n.1 Ciudad de México Feb. 2012

 

Design of Beam–Forming Networks for Multibeam Antenna Arrays Using Coherently Radiating Periodic Structures

 

A. Arce*1, D.H. Covarrubias2, M.A. Panduro3 , L.A. Garza4

 

1,2 Electronics and Telecommunications Department, CICESE Research Centre Carretera Ensenada–Tijuana 3918, 22860 Ensenada, Baja California, Mexico * arce@cicese.edu.mx

3,4 Unidad Académica Multidisciplinaria Reynosa–Rhode, Universidad Autónoma de Tamaulipas Carretera Reynosa–San Fernando, 88779 Reynosa, Tamaulipas, Mexico.

 

ABSTRACT

The design of a beam–forming network (BFN) for a multibeam–steerable antenna array using Coherently Radiating Periodic Structures (CORPS) is presented. In this design, the input ports of the feeding network are optimized using the particle swarm optimization (PSO) algorithm. A two–beam design configuration of CORPS–BFN for a multibeam–steerable linear array is proposed and analyzed. The results shown in this paper present certain interesting characteristics in the array factor response, in terms of sidelobe level (SLL) and directivity (D), for the scannable multibeam linear array and the feeding network simplification for the design of BFN based on CORPS.

Keywords: CORPS beamforming network, scannable multibeam antenna array, array factor.

 

RESUMEN

En este artículo se presenta el diseño de una Red de Conformación de Haz (BFN) para un arreglo de antenas de haces múltiples y electrónicamente dirigibles utilizando Estructuras Periódicas de Radiación Coherente (CORPS). En este diseño las entradas complejas de la red de alimentación se consideran como variables de optimización empleando el algoritmo de optimización de enjambre de partículas (PSO). En este caso, se propone una configuración de diseño de dos haces de una CORPS–BFN para un arreglo lineal de haces múltiples electrónicamente dirigibles para su análisis. Los resultados presentados en este artículo ilustran ciertas características interesantes en la respuesta del factor de arreglo, en términos del nivel de lóbulos laterales (SLL) y la directividad (D), así como en la simplificación de la red de alimentación para el diseño de redes de conformación de haz basadas en CORPS.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] M. Döttling, W. Mohr, and A. Osseiran, Radio Technologies and Concepts for IMT–Advanced, 1st ed. Chichester, England: Wiley, 2009.         [ Links ]

[2] R. Mailloux, Phased array antenna handbook, 2nd ed. Boston, MA: Artech House, 2005.         [ Links ]

[3] R. Garcia, D. Betancourt, A. Ibañez, and C. del–Rio, "Coherently radiating periodic structures (CORPS): a step towards high resolution imaging systems?," IEEE AP–S 2005, Washington, DC, 2005.         [ Links ]

[4] D. Betancourt and C. del Rio Bocio, "A Novel Methodology to Feed Phased Array Antennas," IEEE Transactions on Antennas and Propagation, vol. 55, no. 9, pp. 2489–2494, 2007.         [ Links ]

[5] M. A. Panduro and C. del Rio Bocio, "Design of Beam–forming Networks for Scannable Multi–beam Antenna Arrays using CORPS," Progress In Electromagnetics Research, vol. 84, pp. 173–188, 2008.         [ Links ]

[6] M. A. Panduro and C. del Rio–Bocio, "Design of beam–forming networks using CORPS and evolutionary optimization," AEU International Journal of Electronics and Communications, vol. 63, no. 5, pp. 353–365, May. 2009.         [ Links ]

[7] N. Ferrando and N.J.G. Fonseca, "Investigations on the Efficiency of Array Fed Coherently Radiating Periodic Structure Beam Forming Networks," IEEE Transactions on Antennas and Propagation, vol. 59, no.2, pp. 493–502, Feb. 2011.         [ Links ]

[8] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. Hoboken, NJ: Wiley–Interscience, 2005.         [ Links ]

[9] A. E. Eiben and J. Smith, Introduction to Evolutionary Computing, 1st ed. New York, NY: Springer, 2003.         [ Links ]

[10] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence, 1st ed. San Francisco, CA: Morgan Kaufmann Publishers, 2001.         [ Links ]

[11] A. Arce, D. H. Covarrubias, and M. A. Panduro, "Performance Evaluation of Population Based Optimizers for the Synthesis of Linear Antenna Arrays," Proc. of the 6th IASTED Int. Conf., vol. 649, pp. 044–103, 2009.         [ Links ]

[12] R. Eberhart and Y. Shi, "Particle swarm optimization: developments, applications and resources," Proc. Cong. Evol. Comput., vol. 1, pp. 81–86 vol. 1, 2001.         [ Links ]

[13] N. Jin and Y. Rahmat–Samii, "Advances in Particle Swarm Optimization for Antenna Designs: Real–Number, Binary, Single–Objective and Multiobjective Implementations," IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 556–567, 2007.         [ Links ]

 

Acknowledgements

This work was supported by the Mexican National Science and Technology Council, CONACyT, under grant 127919 and the Science and Technology Council of Tamaulipas Mexico COTACyT under grant 108166.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License