SciELO - Scientific Electronic Library Online

vol.9 issue2Plane-and Space-Filling Trees by Means of Chain CodingDynamic Response of Femoral Cartilage in Knees With Unicompartmental Osteoarthritis author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Journal of applied research and technology

On-line version ISSN 2448-6736Print version ISSN 1665-6423

J. appl. res. technol vol.9 n.2 México Aug. 2011


Numerical and Experimental Analysis in the Manipulation of the Mechanical Properties for Enhancing the Mechanical Resistance of a Material


G. Urriolagoitia–Sosa*, A. Molina–Ballinas, G. Urriolagoitia–Calderón, L. H. Hernández–Gómez, B. Romero–Ángeles, A. Michtchenko


Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Sección de Estudios de Posgrado e Investigación, Unidad Profesional Adolfo López Mateos, Zacatenco, Edificio 5, 2do. Piso, Col. Lindavista, CP 07738, México D. F.



The evolution and development of mankind has been partly possible thanks to the transformation of diverse types of materials and the manipulation of their mechanical properties. This work is focused on numerical and experimental evaluations of the improvement of the mechanical resistance of one material (AISI 316L) through the application of strain hardening and a residual stress field induction. Additionally, the state of the stresses in the component is determined by the application of the Crack Compliance Method, a destructive method based on the Fracture Mechanics Theory. The relevance of the work lies on the implementation of a new methodology which can be used to improve the mechanical resistance of the component by altering the state of the mechanical properties of this material. This research also demonstrates that strain hardening and induction of a residual stress field must be performed carefully or it could result in a component susceptible to failure. In this respect, bending tests are proposed to provide tensile and compressive stress profiles and to corroborate previous history loading on the material.

Keywords: Residual stresses, strain hardening, Bauschinger effect, Crack Compliance Method.



La evolución y desarrollo de la humanidad, aunque parcialmente, ha sido posible gracias a la transformación de diversos materiales y la manipulación en sus propiedades mecánicas. El presente trabajo está dirigido a la evaluación numérica y experimental del mejoramiento de la resistencia mecánica en un material (AISI 316L) por medio de la aplicación de endurecimiento por deformación y la inducción de un campo de esfuerzos residuales. Adicionalmente, el estado de esfuerzos en el componente es determinado por la aplicación del Método de Respuesta de Grieta, el cual es un método destructivo y con base en la teoría de la Mecánica de la Fractura. La relevancia de este trabajo se enfoca en presentar una nueva metodología que puede ser usada para mejorar la resistencia mecánica de los componentes por medio de la alteración del estado de las propiedades mecánicas del material. El trabajo de investigación presentado en este artículo también muestra que si el endurecimiento por deformación y la inducción del campo de esfuerzos residuales no son realizados con cuidado, esto puede resultar en el deterioro del componente y hacerlo que esté susceptible a fallar. En el mismo sentido, la prueba de flexión es propuesta para obtener la caracterización de esfuerzos en tensión y en compresión del material y corroborar la posible historia previa en el mismo.





[1] Urriolagoitia–Sosa, G., Analysis of prior strain history effect on mechanical properties and residual stresses in beams, Oxford Brookes University Ph D Thesis, 2005        [ Links ]

[2] Cheng, W. and Finnie, I., Residual stress measurement and the slitting method, Ed. Springer, 2007, pp. 2–4        [ Links ]

[3] Cheng, W. and Finnie, I., The crack compliance method for residual stresses measurements, Welding in the World, Vol. 28, 1990, pp. 103–110        [ Links ]

[4] Cheng, W. and Finnie, I., A new method of measurement of residual axial stresses applied to a multipass but welded cylinder, Journal of Engineering Materials Technology, Vol. 109, 1987, pp. 337–342        [ Links ]

[5] Prime, M. B., Residual stress measurement by successive extension of the slot: The crack compliance method, Applied Mechanics Review, Vol. 52, No. 2, 1999, pp. 75–96        [ Links ]

[6] Schindler, H. J., Determination of residual stress distribution from measured stress intensity factors, International Journal of Fracture, Vol. 74, No. 2, 1995, pp. 23–30        [ Links ]

[7] Schindler, H. J. and Landolt, R., Experimental determination of residual stress and the resulting stress intensity factors in rectangular plates, 4th European Conference on Residual Stresses (ECRS4), Cluny, France, 1997, pp. 509–517        [ Links ]

[8] Cheng, W. and Finnie, I., Measurement of residual hoop stresses in cylinders using the compliance method, ASME Journal of Engineering Materials and Technology, Vol. 108, 1986, pp. 87–92        [ Links ]

[9] Schindler, H. J., Cheng, W. and Finnie, I., Measurement of the residual stress distribution in a disk or cylinder using the crack compliance method, Proc. 4th Int. Conf. Residual Stress, Baltimore, MD, 1994, pp. 1266–1274        [ Links ]

[10] Cheng, W., Finnie, I. and Vardar, O., Estimation of axisymmetric residual stress in a long cylinder, ASME Journal of Engineering Materials and Technology, Vol. 114, 1992, pp. 137–140        [ Links ]

[11] Urriolagoitia–Sosa, G., Durodola, J. F. and Fellows, N. A., Determination of residual stress relaxation by the use of the crack compliance method, Proceedings of the 14th International Materials Research Congress, IMRC 2005, Cancún, México, 2005, pp. 35        [ Links ]

[12] Irwin, G. R., Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics, Vol. 24, 1957, pp. 361–363        [ Links ]

[13] Schindler, H. J. and Bertschinger, P., Some steps towards automation of the crack compliance method to measure residual stress distribution, 5th Int. Conf. Residual Stress, Linköping, Sweden, 1997, pp. 682–687        [ Links ]

[14] Cheng, W. and Finnie, I., An overview of the crack compliance method for residual stress measurement, Proc. 4th Int. Conf. Residual Stress, Baltimore, MD, Society for Experimental Mechanics, 1994, pp. 449–458        [ Links ]

[15] Kang, K. J., Song, J. H. and Earmme, Y. Y., A method for the measurement of residual stresses using a fracture mechanics approach, Journal of Strain Analysis, Vol. 24, 1989, pp. 23–30        [ Links ]

[16] Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., Numerical recipes, Ed. Cambridge University Press, 1987        [ Links ]

[17] Dowling, J. M., Atkidson, J. R., Dowson, D. and Charnley, J., The characteristics of acetabular cups worn in the human body, The Journal of Bone and Join Surgery, Vol. 60–B, No. 3, 1978, pp. 375–382        [ Links ]

[18] Chandlers, H., Heat treater's guide practice and procedures for Irons and Steels, 2nd Edition, ASM International, 1995        [ Links ]

[19] Measurements group, Student manual for strain gauge technology, Bulletin 309D, 1992, pp. 17–23        [ Links ]

[20] Urriolagoitia–Sosa, G., Durodola, J. F. and Fellows, N. A., A method for the simultaneous derivation of tensile and compression behaviour of material under Bauschinger effect using bend tests, Proceedings of the Inst. of Mech. Eng., Part C, J. of Mech. Eng. Sci., Vol. 220, No. 10, 2006, pp. 1509–1518        [ Links ]

[21] Urriolagoitia–Sosa, G., Durodola, J. F. and Fellows, N. A., Determination of residual stress in beams under Bauschinger effect using surface strain measurements, Strain, Vol. 39, No. 4, 2003, pp. 177–185        [ Links ]

[22] Urriolagoitia–Sosa, G., Durodola, J. F. and Fellows, N. A., Effect of strain hardening on residual stress distribution in beams determined using the crack compliance method, Journal of Strain Analysis for Engineering Design, Vol. 42, No. 2, 2007, pp. 115–121        [ Links ]

[23] Molina–Ballinas, A., Numerical–experimental strain hardening evaluation and determination of the consequences of Bauschinger effect in the mechanical properties of a stainless steel, M Sc Thesis, Instituto Politécnico Nacional, SEPI ESIME, 2010, pp. 75–105.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License