SciELO - Scientific Electronic Library Online

 
vol.3 número1A standard microcontroller based Discrete-Time PI for controlling the motion of a DC-GearmotorImplementation of real time autocorrelation method employing the DS87C550 microcontroller índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of applied research and technology

versão On-line ISSN 2448-6736versão impressa ISSN 1665-6423

J. appl. res. technol vol.3 no.1 Ciudad de México Abr. 2005

 

Efficient circuit implementation of Morlet wavelets

 

M. Meléndez-Rodríguez1, J. Silva-Martínez2 & R. Spencer2

 

1 Texas Instruments, Inc. Dallas, TX 75243 USA. E-mail: m-melendez@ti.com

2 Texas A & M University Electrical Engineering Department College Station, Texas.

 

Received: June 19th 2004.
Accepted: March 3th 2005.

 

Abstract

A family of versatile building blocks intended for the implementation of Morlet wavelets is proposed. The circuits are compact, fully programmable, and well suited for low-voltage and low-power applications. The resulting wavelet is temperature compensated and low sensitive to process parameter variations. Using current sources can independently control the main wavelet parameters. Hspice and breadboard results demonstrate the feasibility of both the wavelet realization and proposed circuits.

Keywords: Wavelet Circuit Implementation, Translinear Circuits, Non-linear circuits, Analog Integrated Circuits.

 

Resumen

Se presentan varios circuitos para la realización de ondoletas tipo Morlet "Morlet wavelets". Los bloques básicos son compactos, programables, y pueden ser utilizados en aplicaciones donde se requiera bajo voltaje de alimentación y bajo consumo de potencia. La arquitectura propuesta está compensada en temperatura y es poco sensible a la variación de los parámetros del proceso de fabricación. Las principales características de los circuitos son controladas por medio de fuentes de corriente. Resultados de simulación y experimentales de la ondoleta y los bloques básicos, muestran la funcionalidad y versatilidad de los circuitos propuestos.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Reference

[1] Sheng, Y. "Wavelet transform", in chapter 10 of A. D. Poularikas, eds., The Transforms and Applications Handbook, IEEE PRESS, 1996.         [ Links ]

[2] Daubechies, I. "The wavelet transform, time-frequency localization and signal analysis", IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 961-1005, Sept. 1990.         [ Links ]

[3] Rioul O. and Vetterli M., "Wavelets and signal processing", IEEE Signal Processing Magazine, pp. 14-38, October 1991.         [ Links ]

[4] Unser M.and Aldroubi A., "A review of wavelets in biomedical applications", Proceedings of the IEEE, vol. 84, no. 4, pp. 626-638, April 1996.         [ Links ]

[5] Szu H. H., Hsu C. C., Thaker P. A. and Zaghloul M. E., "Image wavelet transforms implemented by discrete wavelet chips", Optical Engineering, vol. 33, no. 7, pp. 2310-2325, July 1994.         [ Links ]

[6] Lin J., Ki W. H., Edwards T. and Shamma S., "Analog VLSI implementations of auditory wavelet transforms using switched-capacitor circuits", IEEE Transactions on Circuits and Systems I, vol. 41, no. 9, pp. 572-583, Sept. 1994.         [ Links ]

[7] Vishwanath M., Owens R. M. and Irwin M. J., "VLSI architectures for the discrete wavelet transform", IEEE Transactions on Circuits and Systems II, vol. 42, no. 5, pp. 305-316, May 1995.         [ Links ]

[8] Vega-Pineda J., Cabrera S. D. and Chang Y. C., "VLSI implementation of a wavelet image compression technique using replicated coding/decoding cells", in Proc. IEEE International Symposium on Circuits and Systems, pp. 1173-1176, 1995.         [ Links ]

[9] Schwarzenberg M., Traber M., Scholles M., Schuffny R., "A VLSI chip for wavelet image compression", in Proc. IEEE International Symposium on Circuits and Systems, pp. 271-274, 1999.         [ Links ]

[10] Simon T. and Chandrakasan A. P., "An ultra low-power adaptive wavelet video encoder with integrated memory", IEEE Journal of Solid-State Circuits, vol. 35, no. 4, pp. 572-582, April 2000.         [ Links ]

[11] Edwards R. T. and Cauwenberghs G., "A VLSI implementation of the continuous wavelet transform", in Proc. IEEE International Symposium on Circuits and Systems, 1996.

[12] Moreira-Tamayo O. and Pineda de Gyvez J., "Analog computation of wavelet transform coefficients in realtime", IEEE Transactions on Circuits and Systems I, vol. 44, no. 1, pp. 67-70, Jan. 1997.         [ Links ]

[13] Justh E. W. and Kub F. J., "Analogue CMOS high-frequency continuous wavelet transform circuit", Electron. Lett., vol. 35, no. 1, pp. 4-5, Jan. 1999.         [ Links ]

[14] Haykin S., "Neural networks (A comprehensive foundation)", IEEE Computer Society Press, 1994.         [ Links ]

[15] Christoyianni I., Dermatas E. and Kokkinakis G., "Fast detection of masses in computer-aided mammography", IEEE Signal Processing Magazine, vol. 17, no. 1, pp. 54-64, Jan. 2000.         [ Links ]

[16] Cauwenberghs G., Bayoumi M. and Sánchez-Sinencio E., Guest Editors, "Special issue: Learning on silicon", Analog Integrated Circuits and Signal processing, no. 2/3, vol. 18, Feb. 1999.         [ Links ]

[17] Card H. C., Mcneill D. K. and Schneider C. R., "Analog VLSI circuits for competitive learning networks", Analog Integrated Circuits and Signal processing, no. 15, pp. 291-314, 1998.         [ Links ]

[18] Li M., McAllister H. G., Black N. D., and DePerez T. A., "Perceptual Time-Frequency Subtraction Algorithm for Noise Reduction in Hearing Aids", IEEE Transactions on Biomedical Engineering, vol. 48, no 7, pp. 979-988, Sept. 2001.         [ Links ]

[19] Angrisani L., Daponte P., and D'Apuzzo M., "Wavelet Network-Based Detection and Classification of Transients", IEEE Transactions on Instrumentation and Measurement, vol. 50, no 5, pp. 1425-1435, October 2001.         [ Links ]

[20] Churcher S., Murray A. F. and Reekie H. M., "Programmable analogue VLSI for radial basis function networks", Electron. Lett, vol. 29, pp. 1603-1604, Sept. 1993.         [ Links ]

[21] Choi J., Sheu B. J., Chang J. C. F., "A gaussian synapse circuit for analog VLSI neural networks", in Proc. IEEE International Symposium on Circuits and Systems, pp. 483-486, London, 1994.         [ Links ]

[22] Marshall G. and Collins S., "An analogue radial basis function circuit incorporating floating-gate devices", Analog Integrated Circuits and Signal processing, no. 11, pp. 21-34, 1996.         [ Links ]

[23] Gilbert B., "Current-mode circuits from a translinear viewpoint: a tutorial", in chapter 2 of C. Toumazou, F. J. Lidgey and D. G. Haigh, eds., Analogue IC Design: The Current-Mode Approach, IEE Peter Peregrinus Ltd: London, 1990.         [ Links ]

[24] Gilbert B., "The multi-tanh principle: a tutorial overview", IEEE Journal of Solid-State Circuits, vol. 33, no. 1, pp. 217, Jan. 1998.         [ Links ]

[25] Meléndez-Rodríguez M. and Silva-Martínez J., "Compact building blocks for artificial neural networks", Electron. Lett,, vol. 35, no. 1, pp. 56-57, Jan. 1999.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons