SciELO - Scientific Electronic Library Online

 
vol.14 issue2Study of hexavalent chromium sorption by hydrotalcites synthesized using ultrasound vs microwave irradiationHydrodynamic characterization of an anaerobic membrane bioreactor treating wastewater with several oil and grease levels author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 n.2 Ciudad de México May./Aug. 2015

 

Ingeniería ambiental

 

Efecto del pH sobre la oxidación electroquímica de fenol empleando un ánodo dimensionalmente estable de SnO2-Sb2O5-RuO2

 

Effect of pH on the electrochemical oxidation of phenol using a dimensionally stable anode of SnO2-Sb2O5-RuO2

 

G.C. López-Ojeda*, Ma. R. Gutiérrez-Lara y A. Durán-Moreno

 

Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Ingeniería Química, Ciudad Universitaria, CP. 04510. México, D.F. *Autor para la correspondencia. E-mail: alfdur@unam.mx, Tel. (+52 55) 56225293, Fax (+52 55) 56225303.

 

Recibido 15 de Febrero de 2013
Aceptado 19 de Mayo de 2015

 

Resumen

En el presente trabajo se estudió el desempeño de un ánodo dimensionalmente estable (DSA por sus siglas en inglés) recubierto con capas de SnO2-Sb2O5-RuO2 para su empleo en la oxidación anódica de soluciones sintéticas de fenol. Las capas de recubrimiento fueron aplicados por depositación catódica sobre una malla metálica de titanio, seguida de una activación térmica a 450 °C. El ánodo se caracterizó por microscopía electrónica de barrido y voltamperometría cíclica. Para las pruebas experimentales se empleó un reactor tubular y concentraciones de fenol de 100, 300, 500 y 1000 mg/L utilizando NaCl como electrolito soporte y valores de pH de 2, 7 y 12. El mecanismo de oxidación fue función del pH, por medio de la generación de oxidantes derivados del cloro sumada a la generación de radicales hidroxilo de la electrólisis del agua. En todos los casos, se obtuvieron porcentajes de remoción mayores al 90% medidos en términos de disminución de fenol, del 80% para la demanda química de oxígeno y del 70% en el carbono orgánico total. En los experimentos realizados con la mayor concentración de fenol en condiciones ácidas, se observó el efecto de polimerización de los subproductos de la oxidación del fenol.

Palabras clave: tratamiento de aguas residuales, oxidación anódica, ánodo dimensionalmente estable, óxido de estaño, fenol.

 

Abstract

In the present work as been studied the performance of a dimensionally stable anode (DSA) coated with layers of SnO2-Sb2O5-RuO2 to be used in the anodic oxidation of synthetic solutions of phenol. The coating layers were applied by cathodic deposition on a titanium mesh, followed by thermal activation at 450° C. The anode was characterized by scanning electron microscopy and cyclic voltammetry. In the experimental tests we employed a tubular and phenol concentrations of 100, 300, 500 and 1000 mg/L using NaCl as supporting electrolyte and conducting the experiments at different pH values of 2, 7 and 12. The mechanism of oxidation was function of the pH, through the generation of oxidants chlorine derivatives added to the generation of hidroxyl radicals obtained from the electrolysis of water. In all cases, removal percentages obtained were greater than 90% measured in terms of decrease of phenol, 80% for the chemical oxygen demand and 70% for the total organic carbon. In the experiments with the higher concentration of phenol in acidic conditions, was observed the effect of polymerization of the byproducts of oxidation of phenol.

Key words: wastewater treatment, anodic oxidation, dimensionally stable anode, tin oxide, phenol.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Arikawa T. y Takasu M. Y. (1998) Simultaneous determination of chlorine and oxygen evolving at RuO2/Ti and RuO2-TiO2/Ti anodes by differential electrochemical mass spectroscopy. Journal of Applied Electrochemistry 28, 511-516        [ Links ]

Cañizares P., Sáez C., Sanchez Carretero A. y Rodrigo M. A. (2009) Syntesis of novel oxidants by electrochemical technology. Journal of Applied Electrochemistry 39, 2143-2149        [ Links ]

Chen S., Zheng Y., Wang S. y Chen X. (2011) Ti/RuO2-Sb2O5-SnO2 electrodes for chlorine evolution from seawater. Chemical Engineering Journal 172, 42-51        [ Links ]

Chen X. y Chen G. (2005) Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution. Electrochimica Acta 50, 4155-4159        [ Links ]

Ciriaco L. Santos D., Pacheco M. J. y Lopes A. (2011) Anodic oxidation of organic pollutants on a Ti/SnO2-Sb2O4 anode. Journal of Applied Electrochemistry 41, 577-587        [ Links ]

Comninellis Ch., O. Simond y Schaller V. (1997) Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochimica Acta 42, 2009-2012        [ Links ]

Correa Lozano B., Comninellis Ch., de Battisti A. (1997) Service life of Ti/SnO2-Sb2O5 anodes. Journal of Applied Electrochemistry 27, 970-974        [ Links ]

da Silva L. M., Boodts J. F. C., de Faria L. A. (2003) Chlorine evolutioín reaction at Ti/(RuO2+CO3O4) electrodes. Journal of the Brazilian Chemical Society 14, 388-395        [ Links ]

Ding H., Feng Y. y Liu J. (2007) Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition. Materials Letters 61, 4920-4923        [ Links ]

Ding H., Feng Y., Lu J. (2010) Study on the service life and deactivation mechanism of Ti/SnO2-Sb electrode by physical and electrochemical methods. Russian Journal of Electrochemistry 46, 72-76        [ Links ]

Feng. Y, Liu J. y Ding H. (2010) Preparation, analysis and behaviors of Ti-based SnO2 electrode and the function of rare earth doping in aqueous waste treatment. En Electrochemistry for the environment (Christos C., Guohua Ch. Ed.). Springer Science Business Media, New York, United States, 325352        [ Links ]

Ferreira M., Varela H., Torresi R. M. y Tremiliosi Filho G. (2006) Electrode passivation caused by polymerization of different phenolic compounds. Electrochimica Acta 52, 434-442        [ Links ]

Gattrell M. y Kirk D. W. (1992) A Fourier transform infrared spectroscopy study of the passive film produced during aqueous acidic phenol electro?oxidation. Journal of the Electrochemistry Society 139, 2736-2744        [ Links ]

Kapalka A., Foíti G. y Comninellis Ch. (2008) Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. Journal of Applied Electrochemistry 38, 7-16        [ Links ]

Kodera F., Umeda M. y Yamada A. (2008) Kinetics parameters for anodic oxidation of hypochlorite ion on Pt and Pt oxide electrodes in alkaline solution. Electrochemica Acta 53, 7961-7966        [ Links ]

Krawczyk P. y Skowronski J. M. (2012) Electrochemical reactivation of expanded graphite covered by oligomeric products of phenol electro-oxidation. Electrochimica Acta 79, 202-209        [ Links ]

Lassali T. A. F., Boodts J. F. C. y Bulhoes L. O. S. (2000) Faradaic impedance investigation of the deactivation mechanism of Ir based ceramic oxides containing TiO2 and SnO2. Journal of Applied Electrochemistry 30, 625-634        [ Links ]

Li S., Dorin B., McDowell M. S. y Bunce Nigel J. (2008) Mixed first and zero order kinetics in the electro-oxidation of sulfamethoxazole at a boron doped diamond (BDD) anode. Journal of Applied Electrochemistry 38, 151-159        [ Links ]

Pacheco M. J., Morao A., Lopes A., Ciríaco L., Goncalves I. (2007) Degradation of phenols using boron-doped diamond electrodes: A method for quantifying the extent of combustion. Electrochimica Acta 53, 629-636        [ Links ]

Panic V- V. y Nikolic B. Z. (2007) Sol-gel prepared active ternary oxide coating on titanium in cathodic protection. Journal of the Serbian Chemical Society 72, 1393-1402        [ Links ]

Panniza M. Kapalka A. y Comninellis Ch. (2008) Oxidation of organic pollutants on BDD anodes using modulated currente electrolysis. Electrochimica Acta 53, 2289-2295        [ Links ]

Pletcher D. y Walsh F. C. (1990) Electrochemical Engineering. En Industrial Electrochemistry (Derek P., Frank C. W.). . Chapman and Hall LTD, New York, United Estates.         [ Links ]

Polcaro A. M., Vacca A., Mascia M. y Ferrara F. (2008) Product and by product formation in electrolysis of dilute chloride solutions. Journal of Applied Electrochemistry 38, 979-984        [ Links ]

Polcaro A. M., Vacca A., Mascia M., Palmas S. y Rodriguez Ruiz J. (2009) Electrochemical treatment of water with BDD anodes: kinetics of the reactions involving chloride. Journal of Applied Electrochemistry 39, 2083-2092        [ Links ]

Scialdone O. (2009) Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: A simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochimica Acta 54, 6140-6147        [ Links ]

SEMARNAT (2001) Norma Oficial Mexicana NMX-AA-030-SCFI-2001. Anaílisis de agua. Determinación de la demanda química de oxígeno en aguas naturales, residuales y residuales tratadas. Método de prueba. Secretaría de Medio Ambiente, Recursos Naturales y Pesca. Diario Oficial. Diario Oficial de la Federación. 19 de julio de 2001        [ Links ]

SEMARNAT (2001). Norma Oficial Mexicana NMX-AA-050-SCFI-2001. Análisis de agua. Determinación de fenoles totales en aguas naturales, potables, residuales y residuales tratadas. Método de prueba. Secretaría de Medio Ambiente, Recursos Naturales y Pesca. Diario Oficial. Diario Oficial de la Federación. 19 de julio de 2001        [ Links ]

Su J., Lu. H. Y., Xu H, Sun J. R. Han J. L. y Lin H. B. (2011) Mass transfer enhancement for mesh electrode in a tubular electrochemical reactor using experimental and numerical simulation method. Russian Journal of Electrochemistry 47, 1293-1298        [ Links ]

Szpyrkowics L., Kaul S. N., Neti R. N. y Satyanarayan S. (2005) Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Resources 39, 1601-1613        [ Links ]

Tahar N. B., Savall A. (1998) Mechanistic aspects of phenol electrochemical degradation by oxidation on a Ta/PbO2 anode. Journal of the Electrochemistry Society 145, 3427-3434        [ Links ]

Thomassen M. Karlsen C., Borresen B., Tunold R. (2006) Kinetic investigation of the chlorine reduction reaction on electrochemically oxidised ruthenium. Electrochimica Acta 51, 2909-2918        [ Links ]

Tomcsányi L. y De Battisti A. (1996) Identification of the adsorbed intermediate of the electrooxidation of chloride by the cv technique. Electrochim. Acta 41, 2917-2919        [ Links ]

Wang X. M., Hu J. M., Zhang J. Q. y Cao Ch. N. (2008) Characterization of surface fouling of Ti/IrO2 electrodes in 4-chlorophenol aqueous solutions by electrochemical impedance spectroscopy. Electrochimica Acta 53, 3386-3394        [ Links ]

Zanta C. L. P. S, Michaud P. A., Comninellis Ch., De Andrade A. R. y Boodts J. F. C. (2003) Electrochemical oxidation of p-chlorophenol on SnO2-Sb2O5 based anodes for wastewater treatment. Journal of Applied Electrochemistry 33, 1211-1215        [ Links ]

Zhu X., Tong M., Shi S., Zhao H. y Ni J. (2008) Essential explanation of the strong mineralization performance of boron doped diamond electrodes. Environmental Science and Technology 42, 4914-4920.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License