SciELO - Scientific Electronic Library Online

 
vol.13 issue3Effect of initial substrate/inoculum ratio on cell yield in the removal of hydrophobic vocs in fungal biofiltersOptimization of enzymatic saccharification of wheat straw in a micro-scale system by reponse surface methodology author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.13 n.3 Ciudad de México Dec. 2014

 

Biotecnología

 

Biconversion of (+)-nootkatone by Botryodiplodia theobromae using a membrane aerated biofilm reactor

 

Bioconversión de (+)-nootkaton por Botryodiplodia theobromae utilizando un reactor de biopelícula de membrana aireada

 

D.M. Palmerín-Carreño1, O.M. Rutiaga-Quiñones2, J.R. Verde-Calvo1, S. Huerta-Ochoa1*

 

1 Departamento de Biotecnología, Universidad Autónoma Metropolitana. P.A. 55-535, 09340 Iztapalapa, México D.F., México. * Corresponding author. E-mail: sho@xanum.uam.mx.

2 Departamento de Química-Bioquímica, Instituto Tecnológico de Durango, Durango.

 

Received July 17, 2014.
Accepted October 19, 2014.

 

Abstract

The aim of this work was to evaluate the bioconversion of (+)-valencene to (+)-nootkatone by B. theobromae using a membrane aerated biofilm reactor (MABR) in a two liquid phase system with orange essential oil as the organic phase. In the aqueous phase system, a (+)-nootkatone production rate up to 3.98 mg L-1 h-1 was achieved, obtaining a final product concentration of 398.08 mg L-1 with a bioconversion of 62 %. A two liquid phase system, using orange essential oil as the dispersed phase, was also studied and a final (+)-nootkatone concentration of 310.37 mg L-1 was achieved in the organic phase, with a bioconversion of 330.5 % and a production rate of 2.46 mg L-1 day-1. The lower performance obtained using the two phase system was probably due to mass transfer limitations. The present work is the first report on an MABR for the bioconversion of (+)-valencene to (+)-nootkatone. Further studies on bioconversion products and optimization of biofilm reactor operations are needed to enhance bioconversion.

Keywords: bioconversion, (+)-nootkatone, Botryodiplodia theobromae, orange essential oil, membrane aerated biofilm reactor.

 

Resumen

El objetivo de este trabajo fue evaluar la bioconversión de (+)-valenceno a (+)-nootkaton por B. theobromae usando un reactor de biopelícula de membrana aireada (MABR) en un sistema de dos fases líquidas con aceite esencial de naranja como fase orgánica. En el sistema de fase acuosa, se logró una tasa de producción de (+)-nootkaton de hasta 3.98 mg L-1 h-1, obteniendo una concentración de producto final de 398.08 mg L 1 con una bioconversión de 62 %. También se estudio un sistema de dos fases líquidas, utilizando aceite esencial de naranja como fase dispersa, y se alcanzó una concentración final de (+)-nootkaton en la fase orgánica de 310.37 mg L-1, con una bioconversión de 30.5 % y una tasa de producción de 2.46 mg L-1 día-1. El menor rendimiento obtenido mediante el sistema de dos fases fue probablemente debido a las limitaciones de transferencia de masa. El presente trabajo es el primer reporte utilizando un MABR para la bioconversión de (+)-valenceno a (+)-nootkaton. Se necesitan estudios adicionales sobre los productos de bioconversión y la optimización de las condiciones de operación del reactor de biopelícula para mejorar la bioconversión.

Palabras clave: bioconversión, (+)-nootkaton, Botryodiplodia theobromae, aceite esencial de naranja, reactor de biopelícula de membrana aireada.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors are grateful for financial support from the Mexican Council of Science and Technology (CONACYT) for PhD Grant 226912.

 

References

Abraham B., Onken J., Reil G., Berger RG. (1997). Strategies toward an efficient biotechnology of aromas. In: Kruse H-P, Rothe M (eds). Flavour perception-aroma evaluation. (Proceedings of the 5th Wartburg Aroma Symposium, Eisenach). Eigenverlag Universitaat Potsdam, 357-373.         [ Links ]

Bonora A., Mares D. (1982). A Simple Colorimetric Method for Detecting Cell Viability in Cultures of Eukaryotic Microorganisms. Current Microbiology 7, 217-222.         [ Links ]

Casey, E., Glennon, B., Hamer, G. (1999). Oxygen Mass Transfer Characteristics in a membrane-Aerated Biofilm Reactor. Biotechnology & Bioengineering 62, 183-192.         [ Links ]

D'Arrigo P., Pedrocchi-Fantoni G., Servi S. (2000). Stereoselective synthesis of chiral compounds using whole-cell biocatalysts, in: R.N. Patel (Ed.), Stereoselective Biocatalysis, M. Dekker, New York, 365-396.         [ Links ]

Del Río J.A., Ortuño A., Puig D.G., Iborra J.L., Sabater F. (1991). Accumulation of the sesquiterpenos nootkatone and valencene by callus cultures of Citrusparadisi, Citrus limonia and Citrus aurantium. Plant Cell Reports 10, 410-413.         [ Links ]

Dutra-Molino J.V., Araujo Feitosa V., de Lencastre-Novaes L.C., de Carvalho Santos-Ebinuma V., Moreni Lopes A., Faustino Jozala A., de Araíujo Viana Marques D., Pellegrini Malpiedi L., Pessoa Junior A. (2014). Biomolecules extracted by ATPS: Practical Examples. Revista Mexicana de Ingeniería Química 13, 359-377.         [ Links ]

Elston A., Lin, J., Rouseff, R. (2005). Determination of the role of valencene in orange oil as a direct contributor to aroma quality. Journal of Flavour and Fragrance 20, 381-386.         [ Links ]

Eng F., Gutiérrez-Rojas M., Favela-Torres E. (1998). Culture conditions for jasmonic acid and biomass production by Botryodiplodia theobromae in submerged fermentation. Process Biochemistry 33, 715-721.         [ Links ]

Espina L., Somolinos M., Loreen S., Conchello P., Garcia D., Pageen R. (2010). Chemical composition of commercial Citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Control 22, 896-902.         [ Links ]

Esquivel V., Ponce F., Esponda P., Prado A., Gutieírrez M., Lye G., Huerta S. (2009). Biodegradation of [bmim][PF6] USING Fusarium sp. Revista Mexicana de Ingeniería Química 8, 163-168.         [ Links ]

Faber K. (2004). Biotransformations in Organic Chemistry, Spinger-Verlag, Berlin.         [ Links ]

Fraatz, M.A., Berger, R.G., Zorn, H. (2009). Nootkatone-a biotechnological challenge. Applied Microbiology and Biotechnology 83, 35-41.         [ Links ]

Furusawa M., Hashimoto T., Y Noma., Asakawa Y. (2005). Highly efficient production of nootkatone, the grapefruit aroma from valencene, by biotransformation. Chemical & Pharmaceutical Bulletin (Tokyo) 53, 15131514.         [ Links ]

Girhard M., Machida K., Itoh M., Schmid R., Arisawa A., Urlacher V. (2009). Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYPI09BI from Bacillus subtilis in a two-liquid-phase system. Microbial Cell Factories 8, 1-12.         [ Links ]

González-Brambila, M., López-Isunza, F. (2007). Mass Transport and reaction in a biofilm. Revista Mexicana de Ingeniería Química 6, 127-136.         [ Links ]

Held M., Schmid A., Van Beilen J.B., Witholt B. (2000). Biocatalysis. Biological systems for the production of chemicals. Pure & Applied Chemistry 72, 1337-1343.         [ Links ]

Judd S. (2008). The status of membrane bioreactor technology. Trends in Biotechnology 26, 109-116.         [ Links ]

Kaspera, R., Krings, U., Nanzad, T., Berger, R.G. (2005). Bioconversion of (+)-valencene in submerged cultures of the ascomycete Chaetomium globosum. Applied Microbiology and Biotechnology 67, 477-483.         [ Links ]

Ladaniya, M. (2010). Citrus fruit: Biology. Technology and Evaluation. First Edition, USA, ed. Elsevier. 176-177.         [ Links ]

Lilly, M.D., Woodley, J.M. (1996). A structured approach to design and operation of biotransformation processes. Journal of Industrial Microbiology & Biotechnology 17, 24-29.         [ Links ]

Lizardi-Jiménez, M., Gutiérrez-Rojas, M. (2011). Assessment of the local hydrodynamic zones in a three-phase airlift reactor: looking for the lowest liquid-phase Re. Revista Mexicana de Ingeniería Química 10, 59-65.         [ Links ]

Miller G. L., Blum R., Glennon W.E., Burton A.L. (1960). Measurement of Carboxymethylcellulase Activity. Analytical Biochemistry 2, 127-132.         [ Links ]

Mustafa U., Filiz U., Aysun S., Sadik D. (2012). Research on antifungal and inhibitory effects of DL-limonene on some yeasts. Turkish Journal of Agriculture & Forestry 36, 576-582.         [ Links ]

Onken, J., Berger, R.G. (1999). Biotransformation of citronellol by the basidiomycete Cystoderma carcharias in an aerated-membrane bioreactor. Applied Microbiology and Biotechnology 51, 158-163.         [ Links ]

Qureshi, N., Annous, B.A., Ezeji, T.C., Karcher, P., Maddox I.S. (2005). Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microbial Cell Factories 4, 24.         [ Links ]

Salvador, J.A.R., Clark, J.H. (2002). The allylic oxidation of unsaturated steroids by tert-butyl hydroperoxide using surface functionalised silica supported metal catalysts. Green Chemistry 4, 352-356.         [ Links ]

Sharon-Asa, L., Shalit, M., Frydman, A., Bar, E., Holland, D., Or, E., Lavi, U., Lewinsohn, E., Eyal, Y. (2003). Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. Plant Journal 36, 664-674.         [ Links ]

Wackett, L.P., Gibson, D.T. (1982). Metabolism of xenobiotic compounds by enzymes in cell extracts of the fungus Cunningham-ella elegans. Biochemical Journal 205, 117-122.         [ Links ]

Wilson, C.W., Shaw, P.E. (1978). Synthesis of nootkatone from valencene. Journal of Agricultural and Food Chemistry 26, 1430-1432.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License