SciELO - Scientific Electronic Library Online

 
vol.12 issue3Elaboration and characterization of glycoprotein films obtained with the Maillard's reaction using acetylated starch and whey protein isolatedStability of water-in-oil-in-water multiple emulsions: influence of the interfacial properties of milk fat globule membrane author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.12 n.3 Ciudad de México Dec. 2013

 

Ingeniería de alimentos

 

Efecto de la proteína de suero de leche-sacarosa en la deshidratación osmótica de manzana

 

Effect of whey protein-sucrose in the osmotic dehydration of apple

 

E. Flores-Andrade1, L.A. Pascual-Pineda2, M. Jiménez3 y C.I. Beristain3*

 

1 Facultad de Ciencias Químicas de la Universidad Veracruzana. Prolongación Oriente 6, Orizaba, Veracruz, C. P. 94340, México.

2 Unidad de Servicios de Apoyo de Resolución Analítica (SARA), Universidad Veracruzana, Av. Dr. Rafael Sánchez Altamirano s/n, Col. Industrial-Animas, Apdo. Postal 575, Xalapa, Veracruz., 91000, México.

3 Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dr. Rafael Sánchez Altamirano s/n, Col. Industrial-Animas, Apdo. Postal 575, Xalapa, Veracruz., 91000, México. * Autor para la correspondencia. E-mail: cberistain@uv.mx Tel.: (228) 841 89 00, Fax (228) 841 89 32.

 

Recibido 15 de Julio de 2013
Aceptado 17 de Octubre de 2013

 

Resumen

Se estudió la transferencia de masa en placas de manzana en mezclas acuosas de sacarosa-concentrado de proteína de suero (WPC) de leche a 40°C, para lo cual se prepararon mezclas de WPC:sacarosa a diferentes proporciones y tiempos de inmersión de hasta 400 min, se determino la actividad de agua (aw) y se calculó la presión osmótica de las soluciones. Los datos experimentales de pérdida de masa (ML), pérdida de agua (WL) y ganancia de sólidos (SG) fueron determinados y calculados los coeficientes de difusión aparente del agua (Dw). Los resultados mostraron que las aw de las mezclas se encontraron en el rango de 0.947-0.998; mientras que los coeficientes de difusion Dw promedio en el de 1.16 a 2.32x10-10 m2/s. Se observó que a menor cantidad de sacarosa y mayor WPC los valores de pérdida de masa en el equilibrio (ML), la pérdida de agua en el equilibrio (ML) y la difusión (Dw) disminuyeron. Cuando se usaron proporciones de 2:3 y 3:2 WPC-sacarosa se presentó una resistencia al flujo a la transferencia de masa, lo cual posiblemente se debió a la formación de una membrana líquida de biopolímero alrededor de la placa de manzana.

Palabras clave: mezclas, transferencia de masa, actividad de agua, proteína de suero de leche.

 

Abstract

The mass transfer of sliced apple in aqueous mixtures of sucrose-whey protein concenfrate (WPC) at 40°C was studied. WPC:sucrose mixtures in different ratios and immersion times of up to 400 minutes were prepared. Water activity (aw) was determined and osmotic pressure in aqueous solutions was calculated. The experimental data of mass loss (ML), water loss (WL) and solid gain (SG) of apple slices were determined. The apparent diffusion coefficients of water (Dw) were calculated. The results showed that the aw of the mixtures ranged from 0.947 to 0.998; whereas the average diffusion coefficients of water (Dw) varied from 1.16 to 2.32x10-10 m2/s. It was observed that the lesser the quantity of sucrose and the bigger the WPC, mass loss in the equilibrium (ML), water loss in the equilibrium (ML) and Dw parameters decreased. When used 2:3 and 3:2 protein-sucrose solutions there was a flux resistance to mass, because it is likely to be formed a liquid membrane of biopolymer around the apple.

Keywords: mixtures, mass transfer, water activity, whey protein.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Se agradece al Programa de Mejoramiento del Profesorado a través del proyecto PROMEP/103.5/11/5481, y al programa de mejoramiento CONACyT, por el apoyo brindado a través del proyecto 24203.

 

Referencias

Archibald, A. (2002). La proteína concentrada del suero de leche una super estrella en la nutrición. U. S. Diary Export Council. United States of America.         [ Links ]

Azuara, E., Beristain, C. I. y Gutiérrez, G. F. (2002). Osmotic dehydration of apples by immersion in concentrated sucrose/maltodextrin solutions. Journal of Food Processing Preservation 26, 295-306.         [ Links ]

Azuara, E., Cortes, R., Garcia, H. S. y Beristain, C. I. (1992). Kinetic model for osmotic dehydration and its relationship with Fick's second law. International Journal of Food Science and Technology 27, 409-418.         [ Links ]

Bekele, Y. y Ramaswamy, H. (2010). Going beyond conventional osmotic dehydration for quality advantage and energy savings. EJAST, 1, 1-15.         [ Links ]

Bellary, A. N., Sowbhagya, H. B., y Rastogi N. K. (2011). Osmotic dehydration assisted impregnation of curcuminoids in coconut slice. Journal of Food Engineering 105, 453-459.         [ Links ]

Beristain, C. I., Azuara, E., Cortés, R. y García, H. S. (1990). Mass transfer during osmotic dehydration of pineapple rings. International Journal of Food Science and Technology 25, 576-582.         [ Links ]

Camirand, W., Krochta, J. M., Pavlath, A. E., Wong, D. y Cole, M. E. (1992). Properties of some edible carbohydrate polymer coatings for potential use in osmotic dehydration. Carbohydrate Polymers 17, 39-49.         [ Links ]

Dangaran, K., Tomasula, P. M. y Qi P. (2009). Structure and function of protein-based edible films and coatings. En: Edible Films and Coatings for Food Applications, (M. E. Embuscado y K. C. Huber, eds.), Pp. 25-56. Springer, New York.         [ Links ]

De Wit, J. N. (1998). Nutritional and functional characteristics of whey proteins in food products. Journal of Dairy Science 81, 597-608.         [ Links ]

Dermesonlouoglou, E. K., Pourgouri, S. y Taoukis, P. S. (2008). Kinetic study of the effect of the osmotic dehydration pre-treatment to the shelf life of frozen cucumber. Innovative Food Science and Emerging Technologies 9, 542-549.         [ Links ]

El-Aouar, A. A., Azoubel, P. M., Barbosa, J. L. y XidiehMurr, F. E. (2006). Influence of the osmotic agent on the osmotic dehydration of papaya (Carica papaya L.). Journal of Food Engineering 75, 267-274.         [ Links ]

Flores-Andrade, E., Tapia-Santiago, M., Rangel-Sánchez, K. E., Ortiz-Sánchez, C. A., González-Arnao, M. T. y Beristain, C. I. (2012). Evaluación cinética de la impregnación de sólidos en placas de manzana utilizando una solucion de proteína de suero de leche. En: Proceedings of the XXXIII National Meeting and II International Congress AMIDIQ, San Jose del Cabo, BCS, México.         [ Links ]

Ganjloo, A., Rahman, R. A., Bakar, J., Osman, A. y Bimakr, M. (2011). Kinetics modeling of mass transfer using Peleg's equation during osmotic dehydration of seedless guava (Psidium guajava L.): effect of process parameters. Food and Bioprocess Technology 5, 2151-2159.         [ Links ]

García, M. A., Pinotti, A., Martino, M. N. y Zaritzky, N. E. (2009). Characterization of Starch and Composite Edible Films and Coatings. En: Edible Films and Coatings for Food Applications, (M. E. Embuscado y K. C. Huber, eds.), Pp. 169-210. Springer, New York.         [ Links ]

Ispir, A. y Togrul, I. T. (2009). Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chemical Engineering Research and Design 87, 166-180.         [ Links ]

Jalaee, F., Fazeli, A., Fatemian, H., y Tavakolipour, H. (2011). Mass transfer coefficient and characteristics of coated apples in osmotic dehydrating. Journal of Food Engineering 78, 1355-1360.         [ Links ]

Khoyi, M. R. y Hesari, J. (2007). Osmotic dehydratation kinetics of apricort using sucrose solution. Journal of Food Engineering 78, 1355-1360.         [ Links ]

Lazarides, H. N., Gekas, V. y Mavroudis, N. (1997). Apparent mass diffusivities in fruit and vegetable tissues undergoing osmotic processing. Journal of Food Engineering 31, 315-324.         [ Links ]

Lazarides, H.N., Katsanidis, E. y Nickolaidis, A. (1997). Mass transfer kinetics during osmotic preconcentration aiming at minimal solid uptake. Journal of Food Engineering 25, 151-166.         [ Links ]

Lenart, A. y Flink, J. M. (1984). Osmotic dehydration of potato. II. Spatial distribution of the osmotic agent. Journal of Food Technology 19, 65-89.         [ Links ]

Lewicki, P. P. y Lenart, A. (1995). Osmotic dehydration of fruits and vegetables. En: Handbook of Industrial Drying (A.S. Mujumdar, ed.), Pp. 691-713. Marcel Dekker, New York. 399-405.         [ Links ]

Lewicki, P. P. (2009). Data and Models of Water Activity I: Solutions and Liquid Foods. En: Food Properties Handbook, (M.S. Rahman ed.), Pp. 33-67. Taylor & Francis Group, Nueva York.         [ Links ]

Marceliano, B. N. (2009). Structure and function of polysaccharide gum-based edible films and coatings. En: Edible Films and Coatings for Food Applications, (M. E. Embuscado y K. C. Huber, eds.), Pp. 169-210. Springer, New York.         [ Links ]

Matusek, A., Czukor, B. y Merész, P. (2008). Comparison of sucrose and fructo-oligosaccharides as osmotic agents in apple. Innovative Food Science and Emerging Technologies 9, 365-373.         [ Links ]

Mavroudis, N. E., Gidley, M. J. y Sjöholm, I. (2012). Osmotic processing: effects of osmotic medium composition on the kinetics and texture of apple tissue. Food Research International 48, 839-847.         [ Links ]

Mújica-Paz, H., Valdez-Fragoso, A., López-Malo, A., Palou, E. y Welti-Chanes, J. (2003). Impregnation and osmotic dehydration of some fruits: effect of the vacuum pressure and syrup concentration. Journal of Food Engineering 57, 305-314.         [ Links ]

Phisut, N. (2012). Factors affecting mass transfer during osmotic dehydration of fruits. International Food Research Journal 19, 7-18.         [ Links ]

Qi, H., Le Maguer, M. y Sharma, S.K. (1998). Design and selection of processing conditions of a pilot scale contactor for continuous osmotic dehydration of carrots. Journal of Food Processing and Engineering 21, 75-88.         [ Links ]

Rahman, M. S. (1995). Food Properties Handbook. 2da ed. Editorial CRC Press, New York, USA.         [ Links ]

Saurel, R., Raoult-Wack, A. L., Ríos, G. y Guilbert S. (1994). Mass transfer phenomena during osmotic dehydration of apple I. Fresh plant tissue. International Journal of Food Science Technology 29, 531-542.         [ Links ]

Silva, K. S., Fernandes, M. A. y Mauro, M.A. (2013). Osmotic dehydration of pineapple with impregnation of sucrose, calcium, and ascorbic acid. Food Bioprocess Technology, DOI 10.1007/s11947-013-1049-0.         [ Links ]

Singh, B., Panesar, P. S., Nandas, V. y Kennedy J. F. (2010). Optimisation of osmotic dehydration process of carrot cubes in mixtures of sucrose and sodium chloride solutions. Food Chemistry 123, 590-600.         [ Links ]

Yadav, A. K. y Singh, S. V. (2012). Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science Technology, DOI 10.1007/s13197-012-0659-2.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License