SciELO - Scientific Electronic Library Online

 
vol.9 issue3Statistical evaluation of void fraction correlations for the numerical modeling of two-phase flow in geothermal wellsUtilization of semi continuos catalitic reactive distillation process in the esterification of heptanoic acid author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.9 n.3 Ciudad de México Dec. 2010

 

Ingeniería ambiental

 

Adsorption studies of methylene blue and phenol onto pecan and castile nutshells prepared by chemical activation

 

Estudios de adsorción de azul de metileno y fenol en nueces de pecan y de castilla preparadas por activación química

 

V. Bello–Huitle, P. Atenco–Fernández and R. Reyes–Mazzoco*

 

Departamento de Ingeniería Química, de Alimentos y Ambiental Universidad de las Américas, Puebla. *Corresponding author. E–mail: rene.reyes@udlap.mx Tel. 222 2292660, Fax 222 2292727.

 

Received 20 of July 2010.
Accepted 22 of October 2010.

 

Abstract

The use of agricultural wastes (AWs) as raw materials in the production of granular activated carbon (GAC) is an important topic worldwide. The abundance of pecan nutshells (PNs) and castile nutshells (CNs) provided the motivation for producing GAC from these materials. Phosphoric acid was used at several activation ratios (Rs), and the adsorption capacity of methylene blue (1MB) and phenol (PH) by thv products was measured. The highest GAC yields and the maximum adsorption capacities were obtained at R=2. Although the maximum MB adsorption capacity of GAC produced from CNs was relatively small, 170 mg g–1; that of GAC produced from PNs was 400 mg g–1, which is among; the highest reported. The SEM images of GAC from PNs reveled gin ordered arrangement of nearly straight and tubular macropores with abundant mesopores inside. The ball–pan hardness number of the PN GAC is 80, equal to the value reported for bituminous GAC. These characteristics make the GAC obtained from PNs suitable for packed tower applications.

Keywords: agricultural waste, granular activated carbon, activation ratio, pyrolysis.

 

Resumen

El uso de desechos de agricultura como materia prima en la producción de carbón activado granular (CAG) es un tema importante alrededor del mundo. La abundancia de cáscara de nuez de pecan (NP) y de castilla (NC) fue la motivación para la producción de CAG a partir de estos materiales. Se utilizó ácido fosfórico a distintas relaciones de activación (R) y se midió la capacidad de adsorción de azul de metileno (AM) y fenol. Los CAG con más altos rendimientos y mayores capacidades de adsorción se obtuvieron con R=2. A pesar de que la máxima capacidad de adsorción de AM del CAG producido con NC fue relativamente pequeña, 170 mg g–1; la del CAG producido con NP fue de 400 mg g–1, que se encuentra dentro de los valores reportados más altos. Las imágenes en SEM del CAG de NP revelaron un arreglo ordenado de macroporos tubulares y casi rectos con mesoporos abundantes dentro. La dureza según el método Ball–pan Hardness Number del CAG de NP es de 80, igual al valor reportado para el CAG bituminoso. Estas características hacen que el CAG obtenido de NP sea adecuado para su aplicación en torres empacadas.

Palabras clave: desechos de agricultura, carbón activado granulas, relación de activación, pirólisis.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

Alhamed Y. (2006). Activated carbon from dates stones by ZnCl2 activation. Engineering Science 17, 75–100        [ Links ]

Ahmadpour A., King B. A., Do D. D. (1998). Comparison of equilibria and kinetics of high surface area activated carbon produced from different precursors and by different chemical treatments. Industrial and Engineering Chemistry 37, 1329–1334.         [ Links ]

Al–Qodah Z., Shawabkah R. (2009). Production and characterization of granular activated carbon from activated sludge. Brazilian Journal of Chemical Engineering 26, 10–15.         [ Links ]

Altenor S., Carene B., Emmanuel E., Lambert J., Ehrhardt J.J., Gaspard S. (2009). Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. Journal of Hazardous Materials 165, 1029–1039.         [ Links ]

ASTM (2006). Standards on Activated Carbon, Second Ed.         [ Links ]

Azevedo D., Cássia J., Basto M., Torres E., Jaguaribe E., Cavalcante C. (2007). Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous and Mesoporous Materials 100, 361–364.         [ Links ]

Cañizares P., Carmona M., Baraza O., Delgado A., Rodrigo M.A. (2006). Adsorption equilibrium of phenol onto chemically modified activated carbon F400. Journal of Hazardous Materials 131, 243–248        [ Links ]

Clark R., Lynkins B. (1991). Granular Activated Carbon, Design, Operation and Cost. Lewis Publishers, Michigan        [ Links ]

El–Qada E.N., Allen S.J., Walker G.M. (2008). Influence of preparation conditions on the characteristics of activated carbons produced in laboratory and pilot scale systems. Chemical Engineering Journal 142, 1–13.         [ Links ]

Foo K.Y., Hameed B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 156, 2–10.         [ Links ]

Girgis B.S., El–Hendawy A. (2002). Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous and Mesoporous Materials 52, 105–117        [ Links ]

Gleisy L., Matta I., Dornelas B., Lambrecht R., Antonio da Silva E. (2008). Dynamic isotherms of dye in activated carbon. Materials Research 11, 15–90        [ Links ]

Guy–Reznik S., Katz I., Dosoretz C.G. (2008). Removal of dissolved organic matter by granular–activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents. Water Resources 42, 1595–605        [ Links ]

Hameed B.H., Din A.T.M., Ahmad A.L. (2007). Adsorption of methylene blue onto bamboo–based activated carbon: kinetics and equilibrium studies. Journal of Hazardous Materials 141, 819–825.         [ Links ]

Heschel W., Klose E. (1995). On the suitability of agricultural by–products for the manufacture of granular activated carbon. Fuel 74, 1786–1791        [ Links ]

Jusoh A., Shiung L., Ali N., Noor M. (2007). A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalinization Journal 206, 9–16        [ Links ]

Kai K., Kato Y., Imada N. (2009). Catalyst for oxidizing mercury metal and exhaust gas purifying, http://www.faqs.org/patents/app/20090053121, February        [ Links ]

Kannan N., Sundaram M.M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons–a comparative study. Dyes Pigments 51 2540.         [ Links ]

Karagoz S., Tay T., Ucar S., Erdem M. (2008). Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresources Technology 14, 6214–6222         [ Links ]

Karim M.M., Das A.K., Lee S.H. (2005). Treatment of colored effluent of the textile industry in Bangladesh using zinc chloride treated indigenous activated carbons. Analytica Chimica Acta 576, 37–42        [ Links ]

Lam M. K., Zakaria R. (2010). Production of activated carbon from sawdust using fluidized bed reactor, International Conference on Environment. http://eprints.usm.my/13227/1/production_of_activated.pdf, Accessed on May 28th        [ Links ]

Lima I., Marshall E. (2005). Utilization of turkey manure as granular activated carbon: Physical, chemical and adsorptive properties. Waste Management 25, 726–732.         [ Links ]

Lua A.C., Yang T., Guo J. (2004). Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio–nut shells. Journal ofAnalytical and Applied Pyrolysis 72, 279–287        [ Links ]

Michailof C., Stavropoulos G., Panayiotou C. (2008). Enhanced adsorption of phenolic compounds commonly encountered in olive mill wastewaters on olive husk derived activated carbons. Bioresources Technology 99, 6400–6408        [ Links ]

Nowicki P., Pietrzak R., Wachowska H. (2008). Siberian anthracite as a precursor material for microporous activated carbons Fuel 87, 2037–2040        [ Links ]

Olivares–Marin M., Fernandez–Gonzalez C., Macias–Garcia A., Gomez–Serrano V. (2007). Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid. Energy and Fuels 21, 2942–2949        [ Links ]

Perry R., Green D. (2003). Manual del Ingeniero Químico. Mc Graw Hill. España.         [ Links ]

Pesic B., Storhok V. (1992). Adsorption of gold on activated carbon in bromide solutions. Metallurgical Materials Transactions B 23, 104–122        [ Links ]

Ramos–Rodríguez J.M., Reyes–Mazzoco R. (2010). Adsorption studies of methylene blue and phenol onto black stone cherries prepared by chemical activation. Journal of Hazardous Materials 180, 656–661        [ Links ]

Selvi K., Pattabhi S., Kadirvelu K. (2001). Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresources Technology 80, 87–89.         [ Links ]

Simpson D. (2008). Biofilm processes in biologically active carbon water purification. Water Resources 42, 2839–48         [ Links ]

Srivastava V.C., Mall I.D., Mishra I.M. (2008). Adsorption of toxic metal ions onto activated carbon: Study of sorption behavior through characterization and kinetics. Chemical Engineering Process 47, 1269–1280        [ Links ]

Suárez–García F., Martinez–Alonso A., Tascon J.M.D. (2002). Pyrolysis of apple pulp: chemical activation with phosphoric acid. Journal of Analytical and Applied Pyrolysis 63, 283–301        [ Links ]

Subramani A. (2002). Adsorption of organic pollutants onto natural adsorbents, Mississippi State University Libraries.         [ Links ]

Thinakaran N., Baskaralingam P., Pulikesi M., Panneerselvam P., Sivanesan S. (2008). Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. Journal of Hazardous Materials 151, 316322        [ Links ]

Timur S. (2002). Oreganum Stalks by Chemical Activation. Energy & Fuels 20, 2636–2641        [ Links ]

Tsai W.T., Chang C.Y., Wang S.Y., Chang C.F., Chien S.F., Sun H.F. (2001). Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasification with CO2. Bioresources Technology 78, 203–208        [ Links ]

USDA (1997). Accessed on May 25th, 2010. http://www.ers.usda.gov/briefing/FruitandTreeNuts/fruitnutpdf/nutprodtrade.pdf.         [ Links ]

Yulu D., Walawenderand L. (2002). Activated carbons prepared from phosphoric acid activation of grain sorghum. Bioresources Technology 81, 45–52        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License