SciELO - Scientific Electronic Library Online

 
vol.8 issue3Viscoelastic behavior of solutions and hydrated tablets of individual hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and their mixtures author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.8 n.3 Ciudad de México Dec. 2009

 

Polímeros

 

Efecto de la fibra de agave de desecho en el reforzamiento de polipropileno virgen o reciclado

 

Effect of waste agave fiber on the reinforcing of virgin or recycled polypropylene

 

R.J. Sanjuan–Raygoza y C.F. Jasso–Gastinel*

 

Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Gral. Marcelino Garcia B. # 1451, Guadalajara, Jalisco, México. * Autor para la correspondencia. E–mail: carlos.jasso@cucei.udg.mx Fax: (33) 13785900 ext 7404

 

Recibido 15 de Enero 2009
Aceptado 23 de Septiembre 2009

 

Resumen

La factibilidad que presenta la fibra de agave (tequilana weber) como agente de refuerzo de polipropileno, es estudiada utilizando un agente de acoplamiento para mejorar la interacción fibra–matriz. Para ello se prepararon compositos utilizando polipropileno virgen, reprocesado o reciclado, con diferentes concentraciones de fibra. Como referencia, se prepararon compositos con fibra de henequén. Se realizaron pruebas de esfuerzo–deformación, flexión y resistencia al impacto por caída de dardo, para evaluar el desempeño mecánico de los compositos. La respuesta mecánica y micrografías obtenidas por microscopía electrónica de barrido, muestran el beneficio de utilizar agente de acoplamiento.

Palabras clave: compositos, agente acoplante, reforzante, fibras celulósicas.

 

Abstract

The capability of agave fiber (Tequilana Weber) as a reinforcing agent for polypropylene is studied, using a coupling agent to improve polymer–fiber interaction. Composites using virgin, reprocessed or recycled polypropylene were prepared at different fiber concentrations. Henequen fiber instead of agave fiber was used to prepare other composites as reference. Stress–strain behavior, flexure and falling dart impact testing, were followed to evaluate composites performance. Mechanical response and SEM micrographs show the benefit obtained by the use of coupling agent.

Keywords: composites, coupling agent, reinforcing, cellulose fibers.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Arbelaiz A., Fernández B., Ramos J. A., Retegi A., Llano–Ponte R. and Mondragon I. (2005). Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Composites Science and Technology 65 (10), 1582–1592.         [ Links ]

Balam C. R., Duarte A. S. y Canché E. G. (2006). Obtención y caracterización de materiales compuestos de fibras de la piña de henequén y polipropileno. Revista Mexicana de ingeniería química 5, 39–44.         [ Links ]

Bledzki A. K. and Faruk O. (2004). Wood fiber reinforced polypropylene composites: Compression and injection molding process. Polymer–Plastics Technology and Engineering 43 (3), 871–888.         [ Links ]

Bledzki K., Gassan J. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science 24, 221–274.         [ Links ]

Canevarolo S. V. (2000). Chain scission distribution function for polypropylene degradation during multiple extrusions. Polymer Degradation and Stability 709, 71–76.         [ Links ]

Cazaurang M. M., Peraza S. S., Cruz R. C. (1990). Dissolving–Grade Pulp from. Henequen Fiber. Cellulose Chem. and Technol. 24, 629–638.         [ Links ]

Coutinho F. M., Costa T. H., Suarez J. C., Melo D. P. (2000). Sawdust reinforced polypropylene composites: a study of fracture behavior. Polymer Testing 19, 625–633.         [ Links ]

Da Costa H. M., Ramos V. D., Rocha M. C. (2005). Rheological properties of polypropylene during multiple extrusions. Polymer Testing 24, 86–93.         [ Links ]

Da Costa H. M., Ramos V. D., De Oliveira M. G. (2007). Degradation of polypropylene (PP) during multiple extrusions: Thermal analysis, mechanical properties and analysis of variance. Polymer Testing, 26, 676–684.         [ Links ]

Guerrica E. G., Eguiazábal J.I. and Nazábal J. (1996). Effects of reprocessing conditions on the properties of unfilled and talc–filled polypropylene. Polymer Degradation and Stability 53, 1–8.         [ Links ]

Hristov V. N., Vasileva S. T., Krumova M., Lanch R. and Michler G.H. (2004). Deformation Mechanisms and mechanical properties of modified polypropylene/wood fiber composites. Polymer Composites 25(5), 521–526.         [ Links ]

Incarnato L., Scarfato P, and Acierno D. (1999a). Rheological and mechanical properties of recycled polypropylene. Polym. Eng. Sci. 39, (4), 749–755        [ Links ]

Incarnato L, Scarfato P., Gorrasi G. And Acierno D. (1999b). Structural modifications induced by recycling of PP. Polym. Eng. Sci. 39 (9), 1661–1666.         [ Links ]

Iñiguez C. G., Díaz T. R., Sanjuán D. R., Rowell R.M. (2001). Utilization of by–products from the tequila industry. Part 2: potential value of agave tequilana weber azul leaves. Bioresource Technology 77, 101–108.         [ Links ]

Iñiguez C. G., Lange S. E., Rowell R. M. (2000). Utilization of by–products from the tequila industry. Part 1: agave bagasse as a raw material for animal feeding and fiberboard production. Bioresource Technology 77, 2532.         [ Links ]

Jasso C. F., Sanjuan R. R. (2007). Reinforcing virgin, reprocessed or recycled polypropylene with agave fiber and polymeric coupling agent. SPE ANTEC Tech. Papers, Vol. 65 (1), 54–58        [ Links ]

Jasso G. C., Flores O. F y Laguna C. O. (1994a). Alteración del poliestireno de alto impacto por termocizalla iterativa generada en varios ciclos de extrusión. Revista de plásticos modernos 456, 589–592.         [ Links ]

Jasso C. F., Sanjuan R., Mendizábal E. (1994b). Modification of polyester composites by the use of cellulosic fibers and butyl acrylate monomer. SPE ANTEC Tech. Papers, Vol. 40, 956–958.         [ Links ]

Jasso G. C., López C. P., Mendizábal M. E. (1992). Mechanical and Rheological properties of poly–(butadiene acrylonitrile) rubber compounds reinforced with cellulosic material. Polymer Engineering and Science 32 (6), 443–447.         [ Links ]

Lewin M. L., Pearce E.M. (1998). Handbook of fiber science and technology.Ed. M. Dekker, N.Y. Vol. 4        [ Links ]

Keener T. J., Stuart R. K, Brown T. K. (2004). Maleated coupling agents for natural fibre composites Composites, Part. A. 35, 357–362.         [ Links ]

López–Manchado M. A., Arroyo M. (2000). Thermal and dynamic mechanical properties of polypropylene and short organic fiber composites. Polymer 41, 7761–7767.         [ Links ]

Lu J. Z., Negulescu I. I. and Wu Q. (2005). Maleated wood–fiber/high–density polyethylene composites: Coupling mechanisms and interfacial characterization. Composites Interfaces 12 (1–2), 125–140.         [ Links ]

Mohanty S., Verma S.K., Nayak S. K., Tripathy S.S. (2004). Influence of fiber treatment on the performance of sisal–polyprolylene composites. Journal of Applied Polymer Science 94, 1336–1345.         [ Links ]

Nichetti D. and Manas–Zloczower. (1999). Influence of Molecular Parameters on Material Processability in Extrusion Processes. Polym. Eng. Sci. 36 (5), 887–895.         [ Links ]

Qiu W., Endo T., Hirotsu T. (2004). Interfacial interactions of a novel mechanochemical composite of cellulose with maleated polypropylene. Journal of Applied Polymer Science 94, 1326–1335.         [ Links ]

Raj R. G., Kokta B. V. and Daneault C. (1989). Effect of chemical treatment of fibers on the mechanical properties of polyethylene–wood fiber composites. J. Adhesion Sci. Technol. 3 (1), 55–64.         [ Links ]

Rauwendaal C. (2001). Polymer Extrusion, Hanser Publisher, 4th edition, New York.         [ Links ]

Rozman H. D., Tan G. S., Kumar R.N. (1999). A preliminary study on the use of glass and coconut fibre as reinforcement in polypropylene composites. Polym. Plast. Technol. Eng. 38 (5), 997–1011.         [ Links ]

Rozman H. D., Tan K. W., Kumar R.N. Abubakar A., Mohd Ishak Z.A., Ismail H. (2000). The effect of lignin as a compatibilizer on the physical properties of coconut fiber–polypropylene composites. European Polymer Journal 36, 1483–1494.         [ Links ]

Sanjuan R. R. (1998). Tesis de Maestría en Ingenieria Química, Universidad de Guadalajara.         [ Links ]

Sapieha S., Pupo J. F. and Schreiber H. P. (1989). Thermal degradation of cellulose–containing composites during processing. Journal of Applied Polymer Science 37, 233–240.         [ Links ]

Suetsugu Y. (1990). State of dispersion mechanical properties correlation in small particle filled polymer composites. Intern. Polymer Processing 5 (3), 184–190.         [ Links ]

Tripathy S.S., Levita G. and Di Landro L. (2001). Interfacial Adhesion in Jute–Polyolefin composites. Polymer Composites 22 (6), 815–822.         [ Links ]

Valadez G. A., Cervantes U. J., Olayo R., Herrera F. P. (1999). Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites Composites: Part B. 30, 309–320.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License