SciELO - Scientific Electronic Library Online

 
vol.8 issue3XRD study on the intercalation-pillaring of a 2:1 clay mineral with aluminum polyoxocationic speciesEffect of waste agave fiber on the reinforcing of virgin or recycled polypropylene author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.8 n.3 Ciudad de México Dec. 2009

 

Polímeros

 

Comportamiento viscoelástico de disoluciones y tabletas hidratadas de hidroxipropilmetil celulosa, carboximetil celulosa sódica y sus mezclas

 

Viscoelastic behavior of solutions and hydrated tablets of individual hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and their mixtures

 

M. de L. Garzón1*, A. Tecante2, M. Ramírez–Gilly2 y J. Palacios3

 

1 Departamento de Sistemas Biológicos. Universidad Autónoma Metropolitana–Xochimilco, Calzada del Hueso 1100, Villa Quietud. Coyoacán, 04960, México. * Autor para la correspondencia. E–mail: lgarzon@correo.xoc.uam.mx Tel/FAX: (55) 54 83 72 68

2 Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, D.F., 04510, México

3 Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, D.F., 04510, México.

 

Recibido 1 de Julio 2009
Aceptado 2 de Octubre 2009

 

Resumen

Las propiedades reológicas de los polímeros hidrofílicos con los cuales se elaboran medicamentos orales sólidos, podrían afectar la cinética de liberación del fármaco una vez que se encuentren en contacto con los fluidos gastrointestinales. La hidroxipropilmetilcelulosa (HPMC) y la carboximetilcelulosa sódica (CMCNa) son ampliamente utilizadas en la elaboración de tabletas, por lo cual se estudiaron sus propiedades viscoelásticas a diferentes pH's, a partir de disoluciones y tabletas hidratadas de los polímeros individuales y de sus mezclas. Se observaron diferencias en el comportamiento viscoelástico entre las disoluciones y las tabletas, el cual fue dependiente del pH y de la proporción de los componentes. A pH 1.3 se observaron las mayores diferencias. En ningún caso se detectó la formación de geles verdaderos.

Palabras clave: celulosa, polímeros hidrofílicos, geles, tabletas, viscoelasticidad.

 

Abstract

The rheological properties of hydrophilic pharmaceutical polymers used for oral solid dosage forms could have an effect on the kinetics of drug release when they come in contact with gastrointestinal fluids. Hydroxypropylmethylcellulose (HPMC) and sodium carboxymethylcellulose (CMCNa) are common ingredients of pharmaceutical drug tablets. Therefore, the viscoelastic behavior of solutions and hydrated tablets of the individual polymers and their mixtures was studied at different pHs. The viscoelastic behavior of solutions and tablets was different, but it was pH dependent. At pH 1.3 the largest differences were observed. Gelation was not observed in any of the examined samples.

Keywords: cellulose, hydrophilic polymers, gels, tablets, viscoelasticity.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Adeyeye, M.C., Jain, A.C., Ghorab, M.K.M. y Reilly, W.J. (2002) Viscoelastic evaluation of topical creams containing microcristalline cellulose/sodium carboxymetilcellulose as stabilizer. AAPSPharmSciTech 3(2), 1–10.         [ Links ]

Barnes, H.A., Hutton, J.F. y Walters, K. (1989). An Introduction to Rheology. Elsevier Science Publishers B.V. The Netherlands.         [ Links ]

Bird, B.R., Armstrong, R.C. y Hassager, O. (1987). Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics. John Wiley & Sons, Inc., New York.         [ Links ]

Bonacucina, G., Cespi, M., Misici–Falzi, M. y Palmieri, G.F. (2006). Rheological, adhesive and release characterisation of semisolid carbopol/tetraglycol systems. International Journal of Pharmaceutics 307(2), 129–140.         [ Links ]

Bonferoni, M.C., Caramella, C., Sangalli, M.E., Conte, U., Hernández, R.M. y Pedraz, J.L. (1992). Rheological behavior of hydrophilic polymers and drug release from erodible matrices. Journal of Controlled Release 18, 205–212.         [ Links ]

Bonferoni, M.C., Rossi, S., Ferrari, F., Bertoni, M. and Caramella, C. (1995). Influence of medium on dissolution–erosion behavior of Na–carboxymethylcellulose and on viscoelastic properties of gels. International Journal of Pharmaceutics 117, 41–48.         [ Links ]

Brandrup, J. and Immergut, E.H. (1975). Polymer Handbook, 2nd edition. Pp. IV–33. John Wiley & Sons Inc., New York.         [ Links ]

Diez–Sales, O., Dolz, M., Hernández, M.J., Casanovas, A. y Herraez, M. (2007). Acyclovir delivery matrices base on poly(ethylenglicol)/chitosan semi–interpenetrating networks. Journal of Pharmaceutical Sciences 96(6), 1653–1657.         [ Links ]

European Pharmacopoeia (2008). European Pharmacopoeia, 6th edition. Coincil of Europe, cop. Strasbourg, p. 2113.         [ Links ]

Ferry, J.D. (1980). Viscoelastic Properties of Polymers, 3rd ed. John Wiley and Sons Inc. New York.         [ Links ]

Graessley, W.W. (1974). The Entanglement Concept in Polymer Rheology. Advances in Polymer Science 16, 1–179.         [ Links ]

Jones, D.S., Brown, A.F. y Woolfson, A.D. (2001). Rheological characterization of bioadhesive, antimicrobial, semisolids designed for the treatment of periodontal desease: Transient and dynamic viscoelastic and continuous shear analysis. Journal of Pharmaceutical Sciences 90(12), 1978–1990.         [ Links ]

Jones, D.S., Lawlor, M.S. y Woolfson, A.D. (2003). Rheological and mucoadhesive characterization of polymeric systems composed of poly(methylvinylether–co–malic anhidride) and poly(vinylpyrrolidone), designed as platforms for topical drug delivery. Journal of Pharmaceutical Sciences 92(5), 995–1007.         [ Links ]

Körner, A., Piculell, L., Iselau, F., Wittgren, B. y Larsson, A. (2009). Influence of different polymer types on the overall release mechanism in hydrophilic matrix tablets. Molecules 14, 2699–2716.         [ Links ]

Mahaguna, V., Talbert, R.L., Peters, J.I., Adams, S., Reynolds, T.D., Lam, F.Y.W. y Williams III, R.O. (2003). Influence of hydroxypropyl methylcellulose polymer on in vitro and in vivo performance of controlled release tablets containing alprazolam. European Journal of Pharmaceutics and Biopharmaceutics 56, 461–468.         [ Links ]

Mayol, L., Quaglia, F., Borzacchiello, A., Ambrosio, L. y La Rotonda, M.I. (2008). A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: Rheological, mucoadhesive and in vitro release properties. European Journal of Pharmaceutics and Biopharmaceutics 70, 199–206.         [ Links ]

Michailova, V., Titeva, St., Kotsilkova, R., Krusteva, E. y Minkov, E. (2000). Water uptake and relaxation processes in mixed unlimited swelling hydrogels. International Journal of Pharmaceutics 209, 45–56.         [ Links ]

Miller–Chou, B.A. y Koenig, J.L. (2003). A review of polymer dissolution. Progress in Polymer Science 28, 1223–1270.         [ Links ]

Mitchell, K., Ford, J.L., Armstrong, D.J., Elliot, P.N.C., Hogan, J.E. y Rostron, C. (1993). The influence of drugs on the properties of gels and swelling characteristics of matrices containing methylcellulose or hydroxypropylmethylcellulose. International Journal of Pharmaceutics 100, 165–173.         [ Links ]

Narasimhan, B. y Peppas, N.A. (1997). The physics of polymer dissolution: Modeling approaches and experimental behavior. Advances in Polymer Science 128, 158–207.         [ Links ]

Roshdy, M N., Schwartz, J B.y Schnaare, R L. (2001). A novel method for measuring gel strength of controlled release hydrogel tablets using a cone/plate rheometer. Pharmaceutical Development and Technology 6(1), 107–16.         [ Links ]

Rowe, R.C. (1980). The molecular weigth and molecular weigth distribution of hydroxypropylmethylcellulose used in the film coating of tablets. Journal of Pharmacy and Pharmacology 32(2), 116–119.         [ Links ]

Sáez, V., Hernández, E. y Sanz–Angulo, L. (2003). Liberación controlada de fármacos. Hidrogeles. Revista Iberoamericana de Polímeros 4(1), 21–91.         [ Links ]

Siepmann, J., Podual, K., Sriwongjanya, M., Peppas, N.A. y Bodmeier, R. (1999). A new model describing the swelling and drug release kinetics from hydroxypropylmethylcellulose tablets. Journal of Pharmaceutical Sciences 88(1), 65–72.         [ Links ]

Talukdar, M.M., Vinckier, I., Moldenaers, P. y Kinget, R. (1996). Rheological characterization of xanthan gum and hydroxypropylmethylcellolose with respect to controlled–release drug delivery. Journal of Pharmaceutical Sciences 85(5), 537–540.         [ Links ]

The Merck Index (2001). Edition Staff. Merck & Co. Inc. 13th Ed. Whitehouse Station N.J.         [ Links ]

United States Pharmacopeia (2008). United States Pharmacopeia, vol. 2, 31st ed, p. 23700, USP29–NF24.         [ Links ]

United States Pharmacopoeia Convention Inc. (2005). The United States Pharmacopoeia, USP 25, National Formulary NF 18. Rockville, MD 20852, E.U.A.         [ Links ]

Viridén A., Wittgren, B. y Larsson, A. (2009). Investigation of critical polymer properties for polymer release and swelling of HPMC matrix tablets. European Journal of Pharmaceutical Science 36, 297–309.         [ Links ]

Walker, C.V. y Wells, J.I. (1982). Rheological synergism between ionic and no–ionic cellulose gums. International Journal of Pharmaceutics 11, 309–322.         [ Links ]

Yoon, H.S. y Lim S.T. (2009). Utilization of enzyme–resistant starch to control theophylline release from tablets. Starch–Starke 61(3–4), 154–160.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License