SciELO - Scientific Electronic Library Online

 
vol.8 issue1Chemical engineering education: Making connections at interfacesBiogenic amine production in beef preserved with lactic acid of chemical and bacterial sources author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.8 n.1 Ciudad de México Apr. 2009

 

Biotecnología

 

Adsorción de atrazina en secciones circulares de raíces de tres plantas de humedales

 

Adsorption of atrazine in circular sections of roots of three wetland plants

 

E. Cejudo–Espinosa1*, A. Velázquez–Zepeda y R. Rodríguez–Vázquez2

 

1 Departamento de Ecología Funcional. Instituto de Ecología A.C. Km 2.5 Carretera Antigua a Coatepec No.351, El Haya. Xalapa, Ver. 91070. * Autor para la correspondencia. E–mail: ecejudoe@gmail.com Tel. (+228) 84251800 Ext 4218. Fax (+228) 8421800 Ext 4222

2 Departamento de Biotecnología y Bioingeniería. CINVESTAV. Av. IPN No 2508. Col. San Pedro Zacatenco. México D.F. 07360

 

Recibido 3 de Septiembre 2008
Aceptado 13 de Enero 2009

 

Resumen

El presente trabajo reporta las isotermas de adsorción del herbicida Atrazina, evaluadas en secciones circulares de raíces muertas de tres plantas de humedales, Typha domingensis Sagittaria lancifolia y Echinochloa pyramidalis. La capacidad adsortiva (mg Atrazina /g de biomasa) obtenida de cada especie fue: S. lancifolia (qm= 2.035), seguida de T. domingensis (qm= 1.797), y E. pyramidalis (qm= 1.107). La mayor capacidad adsortiva de S. lancifolia se relaciona con el alto contenido lipídico, componente celular que puede interactuar con el herbicida. Estos resultados aportan información sobre la adsorción como una técnica promisoria para la remoción de plaguicidas en zonas inundables.

Palabras clave: adsorción, isotermas, raíces, Atrazina.

 

Abstract

This work reports the adsorption isotherms for the herbicide Atrazine, evaluated in circular sections of dead roots of three wetland plants, Typha domingensis Sagittaria lancifolia y Echinochloa pyramidalis. The adsorptive capacity (mg Atrazina /g of biomass) of each species was S. lancifolia (qm= 2.035), followed by T. domingensis (qm= 1.797), and E. pyramidalis (qm= 1.107). The highest adsorptive capacity of S. lancifolia is related to the elevated lipid content, which could interact with the herbicide. These results provide information about adsorption as a promissory technique to pesticides remediation in flooded areas.

Keywords: adsorption, isotherms, roots, Atrazine.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

A la QFB Elvira Ríos–Leal i al Ing. Cirino Rojas (Departamento de Biotecnología, CINVESTAV Zacatenco). A la QFB Paula Gamboa por las correcciones al manuscrito. Trabajo realizado con beca CONACyT (191663).

 

Referencias

Accinelli, C., Dinelli, G, Vicari, A. y Catizone, P. (2001). Atrazine and metolachlor degradation in subsoils. Biology and Fertility of Soils 33, 495–500.         [ Links ]

Anderson, M., Gronwald J. (1991). Atrazine Resistance in a Velvetleaf (Abutilon theophrasti) Biotype due to Enhanced Glutathione S–Transferase Activity. Plant Physiology 96,104–109.         [ Links ]

Ayar, N. ,Bilgin, B., Atun, G. (2008). Kinetics and equilibrium studies of the herbicide 2,4–dichlorophenoxyacetic acid adsorption on bituminous shale. Chemical Engineering Journal 138, 239–248.         [ Links ]

Cejudo–Espinosa, E., Ramos–Valdivia, A., Esparza–García, F., Moreno–Casasola, P., y Rodriguez–Vazquez, R. (2009). Short–term accumulation of Atrazine by three plants from a wetland model system. Archives of Environmental Contamination and Toxicology 56(2), 201–208.         [ Links ]

Chamel, A., Vitton N. (1996). Sorption and diffusion of 14C–Atrazine through isolated plant cuticles. Chemosphere 33(6), 995–1003.         [ Links ]

Close, M., Magesan, G., Lee, R., Stewart, M. y Hadfield, J. (2003). Field Study of pesticide leaching in an allophanic soil in New Zealand. 1 : Experimental results. Australian Journal of Soil Research 41, 809–824.         [ Links ]

Comber, S. (1999). Abiotic persistence of Atrazine and simazine in water. Pesticide Science 55, 696–702.         [ Links ]

Costa–Paraiba, L., Luiz–Cerdeira, A., Fraga da Silva, E., Souza–Martins, J., Luiz da Costa Coutinho, H. (2003). Evaluation of soil temperature effect on herbicide leaching potential into groundwater in the Brazilian Cerrado. Chemosphere 53, 1087–1095.         [ Links ]

Czepirski, L., Balys, M. y Nomorowska–Czepirska, E. (2000). Some generalizations of Langmuir adsorption isotherm. Internet Journal of Chemistry 3, 14.         [ Links ]

Fishwick, M. y Wrigth, A. (1977). Comparison of methods for the extraction of plant lipids, Phytochemistry 16,1507–1510.         [ Links ]

Garcinuño, R., Fernández–Hernando, P., Cámara, C. (2003). Evaluation of pesticide uptake by Lupinus seeds. Water Research 37 (14):3481–3489.         [ Links ]

Haney, R., Senseman, S., Krutz, L. y Hons, F. (2002). Soil carbon and nitrogen mineralization as affected by Atrazine and glyphosate. Biology and Fertility of Soils 35, 35–40.         [ Links ]

Kovaios, I., Paraskeva, C., Koutsoukos, P., Payatakes, A. (2006). Adsorption of Atrazine on soils: Model study. Journal of Colloid and Interface Science 299, 88–94.         [ Links ]

Massini, P. (1961). Movement of 2,6–dichlorobenzonitrile in soils and in plants in relation to its physical properties. Weed Research 1(2): 142–146.         [ Links ]

Neurath, S., Sadeghi, A., Shirmohammadi, A., Isensee, A. y Torrents, A. (2004). Atrazine distribution measured in soil and leachate following infiltration conditions. Chemosphere 54, 489–496.         [ Links ]

Senesi, N., D'Orazio, V., Miano, T. (1995). Adsorption mechanisms of s–triazine and bipyridylium herbicides on humic acids from hop field soils. Geoderma 66 (3–4): 273–283        [ Links ]

Solomon, K., Baker, D., Richards, P., Dixon, K., Klaine, S., LaPoint, T., Kendall, R., Weisskopf, C., Gidding, J., Giesy, J., Hall, L. Williams, M. (1996). Ecological risk assessment of Atrazine in North American surface waters. Environmental Toxicology and Chemistry 15, 31–76.         [ Links ]

Stolpe, N. y Shea, P. (1995). Alachlor and Atrazine degradation in nebraska soil and underlying sediments. Soil Science 160, 359–370.         [ Links ]

Tames, R. y Hance, J. (1969). The adsorption of herbicides by roots. Plant and soil 2, 221–226.         [ Links ]

Tsai, W., Hsien, K., Chang, Y., Lo, C. (2005). Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth, Bioresource Technology 96, 657–663.         [ Links ]

Walker, A. (1973). Availability of linuron to plants in different soils. Pesticide Science 4 (5), 665–675.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License