SciELO - Scientific Electronic Library Online

 
vol.7 issue3Fecal bacteria survival in ammonia-treated wastewater dewareted sludgesEffect of the plant stage and presence of a chelating agent on the tolerance and absorption of Cr(III) by Helianthus annuus author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.7 n.3 Ciudad de México Dec. 2008

 

Ingeniería ambiental

 

Physico–chemical water parameters variation in the floating cages of snappers (Lutjanus peru and L. guttatus) farmed in tropical sea

 

La variación de los parámetros físico–químicos del agua en jaulas flotantes de pargos (Lutjanus peru Y L. guttatus) en una granja marina tropical

 

S. C. Vargas–Machuca1, J. T. Ponce–Palafox1,2*, J. L. Arredondo–Figueroa3, E. A. Chávez–Ortiz4 and E.J. Vernon–Carter3

 

1 Universidad Autónoma de Nayarit–CBAP y Escuela Nacional de Ingeniería Pesquera. Av. Tepic–Xalisco S/N, Ciudad de la Cultura Amado Nervo, Tepic, Nayarit. México 63000.

2 Universidad Autónoma del Estado de Morelos–CIB, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca, Morelos, México. * Corresponding author. E–mail: jesus.ponce@usa.net Fax ; (52) (311) 2118813

3 Depto de I. P. H., Área de Ingeniería Química y Planta Experimental de Producción Acuícola (DCBS). Universidad Autónoma Metropolitana — Iztapalapa. Av. San Rafael Atlixco No. 186. Col. Vicentina, México D.F.

4 Centro Interdisciplinario de Ciencias Marinas. Av. IPN s/n, Col. Playa Palo de Santa Rita, CP 23000, La Paz, Baja California Sur, México.

 

Received 31st of May 2008
Accepted 23th of October 2008

 

Abstract

The water column in a fish farm was sampled at three depth layers to determine large and short term changes in water quality. The overall goal of this study was to determine the variation of nutrient concentrations in the water column in open–ocean floating cages with cultures of Lutjanus peru (Pacific red snapper) and L. guttatus (spotted rose snapper). Nutrient concentration (ammonia–N, nitrite–N, nitrate–N, and phosphate) were evaluated every fifteen days in the water column at three stations (cages) and two depths; likewise, several water quality parameters were analyzed daily (water temperature, salinity, dissolved oxygen and Secchi disk). Analyses of water in general showed that no significant differences existed between the monthly concentration of nutrients from the control stations and depths. Nitrate was the nutrient with the highest concentration (2.83 to 3.56 mg/L); however, these values were relatively low and normal for these waters. The results show that when working with fish densities of 2500 to 3500 fish/cage and small quantities of food (60 ton/year) no impact is made on the water column quality in the floating cages culture system.

Keywords: water physico–chemical parameters, floating cage, snappers, sea farm.

 

Resumen

La columna de agua de una granja de peces fue muestreada a tres profundidades para determinar los cambios en la calidad del agua a largo y corto plazo. El objetivo de este estudio fue determinar las variaciones en la concentración de nutrientes en la columna de agua del cultivo en jaulas flotantes de Lutjanus peru (huachinango) y L. guttatus (flamenco). La concentración de nutrientes (amonio, nitritos, nitratos y fosfatos) fue evaluada cada 15 días en la columna de agua en tres estaciones (jaulas) y dos profundidades. También, varios parámetros de la calidad del agua fueron analizados diariamente (temperatura del agua, salinidad, oxígeno disuelto y profundidad de visión del disco de Secchi). Los análisis del agua muestran en general que no hubo diferencias significativas mensualmente entre la concentración de los nutrientes de la estación control y las estaciones experimentales. Los nitratos fueron el nutriente con la mayor concentración (2.83 a 3.56 mg/L), sin embargo, esas concentraciones fueron relativamente bajas y normales para ese tipo de aguas. Los resultados muestran que cuando se trabaja con densidades de peces de 2500 to 3500 peces/jaula y bajas cantidades de alimento (60 ton/año) no se impactan la calidad de la columna de agua del sistema de cultivo de jaulas flotantes.

Palabras clave: parámetros fisico–químicos del agua, jaulas flotantes, pargos, granja marina.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

We gratefully acknowledge financial support from SEDER (Secretaria de Desarrollo Rural) of State of Nayarit, México, and logistical support from the Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit (UAN). This study would not have been possible without the contributions and support of Posgrado of Ciencias Biológico Agropecuarias y Pesqueras (CBAP) of the UAN. Thanks to Noé Pelkasten and Ygor Saenz for collaborating with field samples taking and for helping with laboratory analyses.

 

References

Arredondo–Figueroa, J. L., de la Mora–Ingle, G., Guerrero–Legarreta, I., Ponce–Palafox, J.T. and Barriga–Sosa, I. de los A. (2007). Ammonia and nitrite removal rates in a closed recirculating–water system, under three load rates of rainbow trout Oncorhynchus mykiss. Revista Mexicana de Ingeniería Química 6(3), 301–308.         [ Links ]

Arumlampalam, P., Yusoff, F.M., Shariff, M., Law, A.T. and Srinivasa–Rao, P.S. (1998). Water quality and bacterial populations in a tropical marine cage culture farm. Aquaculture Research 29, 617–624.         [ Links ]

Baross, J., Liston, J. (1970). Occurrence of Vibrio parahaemolyticus and related haemolytic vibrio in marine environments of Washington State. Applied Microbiology 20, 179–186.         [ Links ]

Brown, J.R., Gowen, R.J. and McLusky, D.M. (1987). The effects of salmon farming on the benthos of a Scottish sea loch. Journal of Experimental Marine Biology and Ecology 109, 39–51.         [ Links ]

Dempster, T., Sanchez–Jerez, P., Bayle–Sempere, J. and Kingsford, M. (2004). Extensive aggregations of wild fish at coastal sea–cage fish farms. Hydrobiologia 525, 245–248.         [ Links ]

Dempster, T., Fernandez–Jover, D., Sanchez–Jerez, P., Tuya, F., Bayle–Sempere, J., Boyra, A. and Haroun, R. J. (2005). Vertical variability of wild fish assemblages around sea–cage fish farms: implications for management. Marine Ecology Progress Series 304, 15–29.         [ Links ]

Goldburg, R. J., Hopkins, D. D. and Marston, A. (1996). An environmental critique of government regulations and policies for aquaculture. Pages 553 – 574. In M. Polk (editor). Open ocean aquaculture, proceedings of an international Conference. May 8–10, 1996, Portland, Maine, USA. New Hampshire–Maine Sea Grant College Program # UNHMP–CP–SG–96.         [ Links ]

Hall, P.O.J., Anderson, L.G., Holby, O., Kollberg, S. and Samuelsson, M.O. (1990) Chemical fluxes and mass balances in a marine fish cage farm. I. Carbon. Marine Ecology Progress Series 61, 61–73.         [ Links ]

Hall, P.O.J., Holby, O., Kollberg, S. and Samuelsson, M.O. (1992). Chemical fluxes and mass balances in a marine fish cage farm. IV. Nitrogen. Marine Ecology Progress Series 89, 81–91.         [ Links ]

Holby O. and Hall P.O.J. (1991). Chemical fluxes and mass balances in a marine fish cage farm. II. Phosphorus. Marine Ecology Progress Series 70, 263–272.         [ Links ]

Holmer, M. and Kristensen, E. (1992). Impact of fish cage farming on metabolism and sulfate reduction of underlying sediments. Marine Ecology Progress Series 80, 191–201.         [ Links ]

Karakassis, I., Tsapakis, M. and Hatziyanni, E. (1998). Seasonal variability in sediment profiles beneath fish farm cages in the Mediterranean. Marine Ecology Progress Series 162, 243–252.         [ Links ]

Karakassis, I., Hatziyanni, E., Tsapakis, M. and Plaiti, W. (1999). Benthic recovery following cessation of fish farming: a series of successes and catastrophes. Marine Ecology Progress Series 184, 205–218.         [ Links ]

Karakassis, I., Tsapakis, M., Hatziyanni, E., Papadopoulou, K.N. and Plaiti, W. (2000). Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES Journal of Marine Science 57, 1462–1471.         [ Links ]

Karakassis, I., Tsapakis, M., Hatziyanni, E. and Pitta, P. (2001). Diel variation of nutrients and chlorophyll in sea bream and sea bass cages in the mediterranean. Fresenium Enviromental Bulletin 10(3), 278–283.         [ Links ]

Leong, T.S. (1989). Marine fish diseases. Malaysian experience. In: New Technologies in Aquaculture (ed. by Cheah, S.H. and Saidin, T.H.) pp 91–101. Occasional Publication No. 6. Malaysian Fisheries Society, Serdang.         [ Links ]

Lu, L. and Wu, R.S.S. (1998). Recolonization and succession of marine macrobenthos in organic–enriched sediment deposited from fish farms. Environmental Pollution 101, 241-251.         [ Links ]

Machiasa, A., Karakassisa, I., Labropoulou, M., Somarakisa, S., Papadopouloua, K.N. and Papaconstantinou, C. (2004). Changes in wild fish assemblages after the establishment of a fish farming zone in an oligotrophic marine ecosystem. Estuarine, Coastal and Shelf Science 60, 771–779        [ Links ]

Mazzola, A., Mirto, S. and Danovaro, R. (1999). Initial fish–farm impact on meiofaunal assemblages in coastal sediments of the Western Mediterranean. Marine Pollution Bulletin 38, 1126–1133        [ Links ]

Molina–Domínguez, López, L. G., Vergara, J. M. and Robaina, L. (2001). A comparative study of sediments under a marine cage farm at Gran Canaria Island (Spain). Preliminary results. Aquaculture 192, 225–231.         [ Links ]

Neori, A., Krom, M.D., Cohen, I. and Gordin, H. (1989). Water quality conditions and particulate chlorophyll a of new intensive seawater fishponds in Eilat, Israel: daily and diel variations. Aquaculture 80, 63–78.         [ Links ]

Pawar, V., Matsuda, O., Yamamoto, T., Hashimoto, T. and Rajendran N. (2001). Spatial and temporal variations of sediment quality in and around fish cage farms: A case study of aquaculture in the Seto Inland Sea, Japan. Fisheries Science 67, 619–627.         [ Links ]

Pawar, V., Matsuda, O. and Fujisaki, N. (2002). Relationship between feed input and sediment quality of the fish cage farms. Fisheries Science 68, 894–903.         [ Links ]

Perez, O.M.,Telfer, T.C., del Campo Barquin, L.M. and Ross, L.G. (2003). Water quality requirements for marine fish cage site selection in Tenerife (Canary Islands): predictivemodelling and analysis using GIS. Aquaculture 224, 51–68.         [ Links ]

Perez, O.M., Telfer, T.C. and Ross, L.G. (2005). Geographical information systems–based models for offshore floating marine fish cage aquaculture site selection in Tenerife, Canary Islands. Aquaculture Research 36, 946–961.         [ Links ]

Pitta, P., Karakassis, I., Tsapakis, M. and Zivanovic, S. (1999). Natural vs. mariculture induced variability in nutrients and plankton in the Eastern Mediterranean. Hydrobiologia, 391, 181–194.         [ Links ]

Porter, C.B., Krom, M.D., Robbins, M.G., Brickell, L. and Davidson, A. (1987). Ammonia excretion and total N budget for gilthead seabream (Sparus aurata) and its effect on water quality conditions. Aquaculture 66, 187–297.         [ Links ]

Rapp, P., Ramirez, W.R., Rivera, J.A., Carlo, M. and Luciano, R. (2007). Measurement of organic loading under and open–ocean aquaculture cage, using sediment traps on the bottom. Journal of Applied Ichthyology 23 (6), 661-667.         [ Links ]

Sara, G., Scilipoti, D., Mazzola, A. and Modica, A. (2004). Effects of fish farming waste to sedimentary and particulate organic matter in a southern Mediterranean area (Gulf of Castellammare, Sicily): a multiple stable isotope study (813C and 815N). Aquaculture 234, 199–213.         [ Links ]

Stewart, A.R.J. and Grant J. (2002). Desegregations rates of extruded salmon feed pellets: influence of physical and biological variables. Aquaculture Research 33, 799–810.         [ Links ]

Tomasso, R.J. (1994). Toxicity of nitrogenous wastes to aquaculture animals. Reviews in Fish Science 2, 291–314.         [ Links ]

Tlusty, M.F., Snook, K., Pepper, V.A. and Anderson, M.R. (2000). The potential of soluble and transport loss of particulate aquaculture wastes. Aquaculture Research 31, 745–755.         [ Links ]

Weston, D.P. (1990).Quantitative examination of macrobenthic community changes along an organic enrichment gradient. Marine Ecology Progress Series 61, 233–244.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License