SciELO - Scientific Electronic Library Online

 
vol.7 issue3Dispersion model to describe the carbon removal from wastewater in a fixed bed up flow pilot bioreactor with a hexagonal feldspar packingPhysico-chemical water parameters variation in the floating cages of snappers (Lutjanus peru and L. guttatus) farmed in tropical sea author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.7 n.3 Ciudad de México Dec. 2008

 

Ingeniería ambiental

 

Supervivencia de bacterias fecales en lodos residuales deshidratados tratados con amoniaco

 

Fecal bacteria survival in ammonia–treated wastewater dewareted sludges

 

J.M. Méndez 1*, C. González 1, A. Alvarado–Lassman1, G. Alvarado–Kinnell1 y S. Martínez–Delgadillo2

 

1 Instituto Tecnológico de Orizaba (lTO), 852 Tecnológico, Zapata 94320, Orizaba, Ver. México. * Autor para la correspondencia. E–mail: jmmendez@itorizaba.edu.mx

2 Departamento de Energía, Universidad Autónoma Metropolitana —Azcapotzalco. Av. San Pablo 180. Azcapotzalco. CP.02200. México D.F.

 

Recibido 14 de Enero 2008
Aceptado 26 de Agosto 2008

 

Resumen

Uno de los problemas más importantes de contaminación en lodos provenientes de plantas de tratamiento de aguas residuales municipales y agroindustriales de México es el alto nivel de microorganismos patógenos. El amoniaco es conocido como un desinfectante importante capaz de inactivar significativamente las altas concentraciones microbianas presentes en el lodo. En este estudio, se evaluó el efecto del amoniaco en lodo fisicoquímico agroindustrial y se utilizaron los parámetros cinéticos del modelo de Hom para describir la inactivación de bacterias a diversas concentraciones de sólidos totales. El lodo fisicoquímico crudo con 2.0 ± 0.5% de ST se obtuvo de una planta de tratamiento de aguas residuales de un rastro avícola. El amoniaco se aplicó en dosis de 1 hasta 40% p/p directamente al lodo deshidratado (4%, 8% y 12% de ST). Después de 2h, las muestras fueron analizadas microbiológicamente. Los resultados mostraron que el amoniaco removió 9 y 6.5 logs de coliformes fecales y de Salmonella spp., respectivamente, cumpliendo con los límites de la US EPA para biosólidos clase A. El análisis de los parámetros k, n y m del modelo de Hom, indican mayor resistencia de inactivación de bacterias cuando la concentración de sólidos totales es baja, debido principalmente a dilución del amoníaco en el agua. También, se requirió 75% menos amoníaco para cumplir con el estándar de la US EPA cuando el lodo fue deshidratado.

Palabras clave: amoniaco, bacterias fecales, biosólidos, lodo fisicoquímico, estabilización.

 

Abstract

One of most important pollution problems in sludge from municipal and agro industrial wastewater treatment plants of Mexico is the high level of pathogens microorganisms. Ammonia is known as an important disinfectant capable to significantly inactivate high microbial populations in sludge. In this study, the effect of ammonia was evaluated in agro industrial physicochemical sludge and kinetic parameters of the Hom model were used to describe the inactivation of bacteria at different total solids concentrations. Raw physicochemical sludge with 2.0 ± 0.5% TS were sampled from a bird slaughterhouse wastewater treatment plant. Ammonia in doses from 1 to 40% w/w was directly applied to dehydrated sludge (4, 8 and 12% TS). After 2h, samples were taken for microbial analyses. Results showed that the ammonia removed 9 and 6.5 logs of fecal coliforms and Salmonella spp., respectively, making possible to meet the US EPA limits for Class A biosolids. The analysis of parameters k, n and m of the Hom model, indicates higher resistance to inactivation of bacteria when lower is the total solids concentration, due mainly to the ammonia dilution in the water. Also, 75% less ammonia was needed to meet the US EPA standard when sludge was dewatered.

Keywords: ammonia, biosolids, faecal bacteria, physicochemical sludge, stabilization.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Allievi, L., Colombi, A., Calcaterra, E. and Ferrari, A., (1994). Inactivation of bacteria in sewage sludge by alkaline treatment. Bioresources Technology 49, 25–30.         [ Links ]

APHA–AWWA–WEF (1995). Standard Methods for Examination of Water and Wastewater. 19th ed, Washington DC, USA.         [ Links ]

Booth I. R. (1999). The Regulation of Intracellular pH in Bacteria. In: Bacterial Responses to pH. Novartis Foundation Symposium 221. Wiley & Sons, J UK, pp. 19–37.         [ Links ]

Cabirol N., Rojas Oropeza M., Noyola A. (2002). Removal of helminth eggs by anaerobic thermophilic digestion sludge digestion. Water Science and Technology 45(10), 269-274.         [ Links ]

Gaspard, P., Wiart, J., Schwartzbrod, J. (1997). Parasitological contamination of urban sludge used for agricultural purposes, Waste Management and Research 15, 429–436.         [ Links ]

Ghiglietti, R., Genchi, C., Di Mateo, L., Calcaterra, E., Colombi, A. (1997). Survival of Ascaris Suum in ammonia–treated wastewater sludges. Bioresources Technology 59, 195-198.         [ Links ]

Hass C. N., Joffe J., Heath M., Jacangelo J., Anmangandla U. (1998) Predicting disinfection performance in continuous flow systems from batch disinfection kinetics. Water Science and Technology 38(6), 171-179.         [ Links ]

Jiménez B., Barrios, J. A., Méndez J. M., Díaz, J., (2004). Sustainable sludge management in developing countries. Water Science and Technology 49(10), 251–258.         [ Links ]

Méndez, J.M., Jiménez, B.E., Maya, C. (2004). Disinfection kinetics of pathogens in physicochemical sludge treated with ammonia. Science and Technology 50(9), 67-74.         [ Links ]

Méndez, J.M., Alvarado–Lassman, A., González, C. y López, A. (2006). Determination of kinetic parameters in the disinfection with ammonia of dehydrated physicochemical sludge from a bird slaughterhouse. Proceedings of the 21st International Conference on Solid Waste Technology and Management, sponsored by The Journal of Solid Waste Technology and Management. 828 – 835. USA.         [ Links ]

Méndez, J.M., Corte, J., Narvaez, I. E., Alvarado–Lassman, A. (2007). Improvement of sludge mesophilic anaerobic digestion via thermic inactivation of indicator and pathogen bacteria. Proceedings of the 4th IWA Leading–Edge Conference and exhibition on water and wastewater technologies. pp 1–8. Singapore.         [ Links ]

Pernitsky D. J., Gordon R. F. y Huck P. M. (1995). Disinfection kinetics of heterotrophic plate count bacteria in biologically treated potable water. Water Resources 29(5), 1235–1241.         [ Links ]

U.S. EPA (1994). A Plain English Guide to the EPA, Part 503 Biosolids Rule. U.S. EPA/832/R–93–003.         [ Links ]

Stumm, W. Morgan, J.J. (1996). Aquatic Chemistry. 3rd. ed. Wiley– Interscience Pub. USA.         [ Links ]

Veschetti E., Cutilli D., Bonadonna L., Briancesco C., Martini C., Cecchini G., Anastasi P., Ottaviani M. (2003) Pilot–plant study of peracetic acid and sodium hypochlorite waste water disinfection. Water Resources 37, 78-94.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License