SciELO - Scientific Electronic Library Online

 
vol.11 issue2Visualización de la Mitosis con el microscopio de fuerza atómicaGeles moleculares y organogelantes author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


TIP. Revista especializada en ciencias químico-biológicas

Print version ISSN 1405-888X

TIP vol.11 n.2 Ciudad de México Dec. 2008

 

Artículos de revisión

Construcción de moléculas quirales: alquilación alílica asimétrica

Alonso Rosas-Hernández1 

Erika Martin1  * 

1Depto. de Química Inorgánica, Facultad de Química, UNAM. Av. Universidad 3000, Cd. Universitaria, México D.F., 04510, México.


Resumen

Una de las estrategias más poderosas para la formación de moléculas quirales complejas es la reacción de alquilación alílica asimétrica catalizada por paládio. Esta reacción ha sido ampliamente estudiada con una gran variedad de sustratos y nucleófilos en diferentes condiciones de reacción, y ha promovido la síntesis de nuevos ligantes quirales para ser evaluados como inductores asimétricos. A pesar de que se conoce el mecanismo por el que opera, así como los equilibrios en que están involucradas las especies activas, el desempeño del sistema catalítico depende de la modulación de factores tales como: tipo de sustrato, naturaleza del nucleófilo, medio de reacción, precursor catalítico y tipo de ligante.

Palabras Clave: Alquilación alílica; catálisis asimétrica; compuestos quirales; paládio

Abstract

One of most powerful approaches for the formation of complex chiral molecules is the palladium-catalyzed asymmetric allylic alkylation. This reaction has been broadly studied with a great variety of substrates and nucleophiles under different reaction conditions and it has promoted the synthesis of new chiral ligands to be evaluated as asymmetric inductors. Although the mechanisms as well as the active species equilibria are known, the performance of the catalytic system depends on the fine tuning of factors such as: substrate type, nucleophile nature, reaction medium, catalytic precursor and ligand type.

Key Words: Allylic alkylation; asymmetric catalysis; chiral compounds; palladium

Texto completo disponible sólo en PDF.

Agradecimientos

Los autores agradecen a DGAPA-PAPIIT IN210607 y CONACYT CB060430 por el financiamiento otorgado.

Referencias

1. Pfaltz, A. & Lautens, M. en Comprehensive asymmetric catalysis (eds. Jacobsen, E. N., Pfaltz, Α., Yamamoto, Η.) 833-884 (Springer-Verlag, Berlín, 1999). [ Links ]

2. Nicolaou, K.C., Bulger, P. G. & Sarlah, D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4442-4489 (2005). [ Links ]

3. Corbet, J.P. & Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev. 106, 2651-2710 (2006). [ Links ]

4. Trost, B.M. & van Vranken, D.L. Asymmetric transition metal-catalyzed allylic alkylations. Chem. Rev. 96,395-422 (1996). [ Links ]

5. Trost, B.M. & Lee, С. en Catalytic asymmetric synthesis (ed. Ojima, I.) 593-649 (Wiley-VCH, New York, 2000). [ Links ]

6. Вurlinа, F., Clivio, P., Fourrey, J. L., Riche, C. & Thomas, M. Convenient chemical resolution of a bicyclic hydroxylactone of synthetic interest. Tetrahedron Lett. 35, 8151-8152 (1994). [ Links ]

7. Suzuka, T., Kawatsura, M., Okada, Α. & Hayashi, T. Palladium-catalyzed asymmetric allylic substitution with a cyclopentadienide: asymmetric synthesis of metallocenes. Tetrahedron: Asymmetry 14, 511-515 (2003). [ Links ]

8. Trost, B.M. & Crawley, M.L. Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem. Rev. 103, 2921-2943 (2003). [ Links ]

9. Trost, B.M., Li, L. & Guile, S.D. A novel palladium-catalyzed cycloalkylation to isoxazoline 2-oxides. Application for the asymmetric synthesis of carbanucleosides. J. Am. Chem. Soc. 114, 8745-8747 (1992). [ Links ]

10. Acemoglu, L. & Williams, J.M. Palladium-catalysedenantioselective synthesis of Ibuprofen. J. Mol. Catai. A: Chem. 196, 3-11 (2003). [ Links ]

11. Trost, B.M. & Shi, Ζ. From furante nucleosides. J. Am. Chem. Soc. 118, 3037-3038 (1996). [ Links ]

12. Fernández, F. et al. Allylic alkylations catalyzed by palladium systems containing modular chiral dithioethers. A structural study of the allylic intermediates. Organometallics, 24, 3946-3956 (2005). [ Links ]

13. Yamaguchi, M., Shima, T., Yamagishi, T. & Hida, M. Palladium-catalyzed asymmetric allylic alkylation using dimethyl malonate and its derivatives asnucleophile. Tetrahedron: Asymmetry 2, 663-666(1991). [ Links ]

14. Trost, B.M. & Murphy, D. J. A model for metal-templated catalytic asymmetric induction viap-allyl fragments. Organometallics 4, 1143-1145 (1985). [ Links ]

15. Arreóla-Barroso, A. & Martin, E. Asymmetric allylic alkylation in ionic liquids. Resultados sin publicar. [ Links ]

16. Trost, B.M. & Ariza, X. Catalytic asymmetric alkylation of necleophiles: asymmetric synthesis of α-alkylated amino acids. Angew. Chemie. Int. Ed. 36, 2635-2637 (1997). [ Links ]

17. Tsuji, H. en Palladium reagents and catalysts (ed. Tsuji, H.) 1-12 (Jonh-Wiley & Sons, London, 1995). [ Links ]

18. Martin, E. & Diéguez, M. Thioether containing ligands for asymmetric substitution reactions, C. R. Chimie 10, 188-205 (2007). [ Links ]

19. Masdeu-Bultó, Α., Diéguez, M., Martin, E. & Gómez, M. Chiral thioether ligands: coordination chemistry and asymmetric catalysis. Coord. Chem. Rev. 242, 159-201 (2003). [ Links ]

20. Auburn, P.R., Mackenzie, P.B. & Bosnich, B. Asymmetric synthesis. Asymmetric catalytic allylationusing palladium chiralphosphine complexes. J. Am. Chem. Soc. 107, 2033-2046 (1985). [ Links ]

21. Pregosin, P.S. et al. X-ray diffraction, multidimensional NMR spectroscopy, andMM2 * calculations on chiral allyl complexes of palladium(II). Organometallics 13, 83-90 (1994). [ Links ]

22. von Matt, P. & Pfaltz, A. Chiral phosphinoaryldihydrooxazoles as ligands in asymmetric catalysis: Pd-catalyzed allylic substitution. Angew. Chem.Int. Ed. Engl. 32, 566-568(1993). [ Links ]

23. Hayashi, T. en Advances in natural product chemistry, (ed. Attaur-Rahman) 19-34 (Harwood Academic Publishers, Chur, 1992). [ Links ]

24. Hayashi, T. Asymmetric synthesis catalyzed by chiral ferrocenylphosphine-metal complexes. Pure Appi. Chem. 60, 7-12 (1988). [ Links ]

25. Abbenhius, H.C. et al. Successful application of a "forgotten" phosphine in asymmetric catalysis: a 9-phosphabicyclo[3.3. l]non-9-yl ferrocene derivative as chiral ligand. Organometallics, 14, 759-766 (1995). [ Links ]

26. Diéguez, M., Pámies, O. & Claver, C. Modular furanoside diphosphite ligands for Pd-catalyzed asymmetric allylic substitution reactions: scope and limitations. Adv. Synth. Catal. 347, 1257-1266 (2005). [ Links ]

27. Pfaltz, A. Chiral semicorrins and related nitrogen heterocycles as ligands in asymmetric catalysis. Ace. Chem. Res. 26, 339-345 (1993). [ Links ]

28. Kubota, H, Nakajima, M. & Koga, K. Enantioselective palladium catalyzed allylic alkylation with C2-symmetric chiral diamine ligands. Tetrahedron Lett. 34, 8135-8138 (1993). [ Links ]

29. Dawson, G.J., Frost, C.G., Williams, J.M.J. & Coates, S.J. Asymmetric palladium catalysed allylic substitution using phosphorus containing oxazoline ligands. Tetrahedron Lett. 34, 3149-3150 (1993). [ Links ]

30. Sprinz, J. & Helmchen, G. Phosphinoaryl-andphosphinoalky loxazolines as new chiral ligands for enantioselective catalysis: very high enantioselectivity in palladium catalyzed allylic substitutions. Tetrahedron Lett. 34,1769-1772 (1993). [ Links ]

31. Wimmer, P. & Widhalm, M. New chiral aminophosphines and their use in asymmetric catalysis. Tetrahedron: Asymmetry 6, 657-660 (1995). [ Links ]

32. Gladiali, S., Medici, S., Ріrrі, G., Pulacchini, S. & Fabbri, D. BINAP(S): an axially chiral P,S-heterodonor ligand for asymmetric catalysis based on binaphthalene backbone. Can. J. Chem. 79, 670-678 (2001). [ Links ]

33. Zhang, W. & Shi, M. Axially chiral P,S-heterodonor ligands with a binaphthalene framework for palladium-catalyzed asymmetric allylic substitutions: experimental investigation on the reversal of enantioselectivity between different alkyl groups on sulfur atom. Tetrahedron: Asymmetry 15, 3467-3476 (2004). [ Links ]

34. Enders, D. et al. Asymmetric synthesis of novel ferrocenyl ligands with planar and central chirality and their application to Pd-catalyzed allylic substitutions. Eur. J. Org. Chem. 2000, 3399-3426 (2000). [ Links ]

35. Evans, D.A., Campos, K.R., Tedrow, J.S., Michael, F.E. & Gagné, M.R. Chiral mixed phosphorus/sulfur ligands for palladium-catalyzed allylic alkylations and animations. J. Org. Chem. 64, 2994-2995 (1999). [ Links ]

36. Evans, D.A., Campos, K.R., Tedrow, J.S., Michael, F.E. & Gagné, M.R. Application of chiral mixed phosphorus/sulfur ligands to palladium-catalyzed allylic substitutions. J. Am. Chem. Soc. 122, 7905-7920 (2000). [ Links ]

37. Albinati, Α., Pregosin, P.S. & Wick, K. A new P,S-chiral auxiliary derived from thioglucose. X-ray structure of a palladium 1,3-diphenylallyl complex with a strongly rotated allyl ligand. Organometallics 15, 2419-2421 (1996). [ Links ]

38. Allen, J. V. et al. Palladium-catalysed asymmetric allylic substitution: a ligand design incorporating steric and electronic effects. J. Chem. Soc, Perkin Trans. 1 15, 2065-2072 (1994). [ Links ]

39. Takada, H., Oda, M., Oyamada, A., Ohe, K. & Uemura, S. Catalytic diastereo selective sulfımidation of diary 1 sulfides and application of chiral sulfimides to asymmetric allylic alkylation. Chirality 12, 299-312 (2000). [ Links ]

40. You, S.-L., Zhou, Y.-G., Hou, X.-L. & Dai, L.-X. Enantioselective palladium catalyzed allylic substitution with chiral thioether derivatives of ferrocenyl-oxazoline and the role of planar chirality in this reaction. Chem. Commun. 24, 2765-2766 (1998). [ Links ]

41. You, S.-L. Hou, X.-L. , Dai, L.-X ., Yu, Y.-H. & Xia, W. Role of planar chirality of S,Ν- and P. N-ferrocene ligands in palladium-catalyzed allylic substitutions. J. Org. Chem. 67, 4684-4695 (2002). [ Links ]

42. Jansat, S. et al. Chiral 5,5-donor ligands in palladium-catalysed allylic alkylation. Tetrahedron: Asymmetry 12, 1469-1474 (2001). [ Links ]

43. Trost, B.M. & Weber, L. New synthetic reactions, stereochemistry of allylic alkylation. J. Am. Chem. Soc. 97, 1611-1612(1975). [ Links ]

44. Trost, B.M. & Herdon, J.W. Inversion of the electronic reactivity of allyl acetates using an aluminum-tin reagent. J. Am. Chem. Soc. 106, 6835-6837(1984). [ Links ]

45. Fiaud, J.C. & Legros, J.Y. New method for the classification of nucleophiles in the palladium-catalyzed substitution of ally lie acetates. J. Org. Chem. 52, 1907-1911 (1987). [ Links ]

46. Mandal, S., Gowda, N., Krishnamurthy, S. & Nethaji, M. Palladium (II) allyl complexes of chiral diphosphazane ligands: ambident coordination behaviour and stereodynamic studies in solution. Dalton Trans. 5, 1016-1027 (2003). [ Links ]

47. Gogoll, Α., Johansson, C, Axén, A. & Grennberg, H. Determination of absolute configuration of (p-allyl)palladium complexes by NMR spectroscopy and stereoselective complexation. Chem. Eur. J. 7, 396-403 (2001). [ Links ]

48. Pregosin, P.S. & Salzman, R. Structure and dynamics of chiral allyl complexes of Pd(II): RMN spectroscopy and enantioselective allylic alkylation. Coord. Chem. Rev. 155, 35-68 (1996). [ Links ]

49. Drommi, D., Saporita, M., Bruno, G., Faraone, F., Scafato, P. & Rosini, С. Origin of enantioselectivity in palladium-catalyzed asymmetric allylic alkylation reactions using chiral N,N-ligands with different rigidity and flexibility. Dalton Trans. 15,1509-1519. (2007). [ Links ]

50. Hayashi, T., Yamamoto, A. & Hagihara, T. Stereo-andregiochemistry in palladium-catalyzed nucleophilic substitution of optically active (E)- and (Z)-allyl acetates. J. Org. Chem. 51, 723-727 (1986). [ Links ]

51. Arena, C.G., Drommi, D. & Faraone, F. Structural control in palladium(II)-catalyzed enantioselective allylic alkylation by new chiral phosphine-phosphite and pyridine-phosphite ligands. Tetrahedron: Asymmetry 11, 2765-2779 (2000). [ Links ]

52. Frost, CG., Howarth, J. & Williams, J.M.J. Selectivity in palladium catalyzed allylic substitution. Tetrahedron: Asymmetry 3, 1089-1122(1992). [ Links ]

53. Pregosin, P. S. & Trabesinger, G. 2-D NMR Spectroscopy of chiral phosphine complexes. Applications to problems related to enantioselective homogeneous catalysis. J. Chem. Soc, Dalton Trans. 5, 727-734 (1998). [ Links ]

54. Yamaguchi, M., Shima, T., Yamagishi, T. & Hida, M. Palladium-catalyzed asymmetric allylic alkylation using dimethyl malonate and its derivatives asnucleophile. Tetrahedron: Asymmetry 2, 663-666(1991). [ Links ]

55. Yamaguchi, M., Shima, T., Yamagishi, T. & Hida, M. Palladium-catalyzed asymmetric alkylation via p-allyl intermediate: acetamidomalonate ester as a nucleophile. Tetrahedron Lett. 31, 5049-5052 (1990). [ Links ]

56. Allen, J.V., Bower, J.F. & Williams, J.M.J. Enantioselective palladium catalyzed allylic substitution. Electronic and steric effects of the ligand. Tetrahedron: Asymmetry 5, 1895-1898 (1994). [ Links ]

57. Tu, T. et al. Trans effect of different coordinated atoms of planar chiral ferrocene ligands with the same backbone in palladium-catalyzed allylic substitutions. Organometallics 22, 1255-1265 (2003). [ Links ]

*E-mail: erikam@unam.mx

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons