SciELO - Scientific Electronic Library Online

 
vol.9 issue2Effect of the essential oil, infusion and ethanol extract of Thymus vulgaris L, on the growth in vitro of group a β-hemolytic Streptococcus pyogenesHydroxyapatite, relevance in mineral tissues and biomedical aplications author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


TIP. Revista especializada en ciencias químico-biológicas

Print version ISSN 1405-888X

TIP vol.9 n.2 Ciudad de México Dec. 2006

 

Artículos de revisión

Mecanismos moleculares que controlan el desarrollo de la extremidad de los vertebrados

Molecular mechanisms that controls vertebrate limb development

René Fernando Abarca-Buis1 

David Garciadiego-Cázares1 

Jesús Chimal-Monroy1  * 

1Depto. de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM. С.U., Apdo. Postal 70228, СР. 04510, México, D.F.


Resumen

¿Cómo un grupo de células indiferenciadas pueden formar estructuras y tejidos altamente organizados y diferenciados?, ¿Cuál es la naturaleza de las señales que dictan estos eventos? ¿Cómo son los procesos del desarrollo que actúan para que las diferentes especies desarrollen estructuras similares pero adaptadas al medio en el que viven?

Uno de los modelos que han permitido responder en parte a estas interrogantes es la extremidad embrionaria. A partir de los estudios en la extremidad embrionaria se han propuesto una serie de interesantes paradigmas que han cambiado la percepción de ver a los procesos del desarrollo como aislados y poco dinámicos. En esta revisión, destacamos aquellos estudios que han contribuido de manera amplia a entender la inducción de la formación de la extremidad y el establecimiento de los centros organizadores que controlan su morfogénesis, así como el patrón esquelético que incluye la diferenciación del cartílago y la muerte celular.

Palabras Clave: AER; condrogénesis; extremidad embrionaria; identidad de los dedos; identidad de la extremidad; muerte celular programada; zona de progreso; ZPA

Abstract

How can a group of undifferentiated cells develop into complex structures and highly organized and differentiated tissues? What is the nature of the signals that dictate these events? Which developmental processes act so that different species can develop similar structures adapted to the environment where they live? A model that partly answers these questions is the embryonic limb. Limb bud studies have suggested interesting paradigms that have changed the perception of development as an isolated and not very dynamic process. The present work reviews the studies that have led to understand the induction of the limb bud and the establishment of the organizing centers that control limb morphogenesis, as well as the skeletal pattern that includes cartilage differentiation and cell death.

Key Words: AER; chondrogenesis; limb bud; digit identity; limb identity; programmed cell death; progress zone; ZPA

Texto completo disponible sólo en PDF.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Agradecimientos

Los autores quieren agradecer a todos los miembros del laboratorio por sus valiosos comentarios a este trabajo. El presente trabajo recibió apoyo financiero por parte del CONACYT proyecto 42568Q y por parte de DGAPA, UNAM proyecto IN200205.

Referencias

1. Cohn, M.J. & Tickle, С. Developmental basis of limblessness and axial patterning in snakes. Nature 399, 474-479 (1999) . [ Links ]

2. Wolpert L., B.R., Jessell, T., Lawrence, P., Meyerowitz, E. & Smith, J. Principles of Development (Oxford University Press, New York, USA, 2002). [ Links ]

3. Mariani, F.V. & Martin, G.R. Deciphering skeletal patterning: clues from the limb. Nature 423,319-325 (2003). [ Links ]

4. Sanz-Ezquerro, J.J. & Tickle, C. "Fingering" the vertebrate limb. Differentiation 69, 91-99 (2001). [ Links ]

5. Gilbert, S. Development Biology (Sunderland Massachusetts, USA, 2000). [ Links ]

6. Harrison, R.G. Experiments on the development of Amblystoma, a self-differentiating equipotential system. Journal of Experimental Zoology 25, 413-461 (1918). [ Links ]

7. Balinsky, B.I. Das Extremitätenseitenfeld, seine Ausdehnung und Beschaffenheit. Rouux Archives 130, 704-747 (1933). [ Links ]

8. Cohn, M.J., Izpisua-Belmonte, J.C., Abud, H., Heath, J.K. & Tickle, C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 80, 739-746 (1995). [ Links ]

9. Stephens, T.D. & McNulty, T.R. Evidence for a metamerie pattern in the development of the chick humerus. J Embryol Exp Morphol 61, 191-205 (1981). [ Links ]

10. Ng, J.K. et al. The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development 129, 5161-5170 (2002). [ Links ]

11. Crossley, P.H., Minowada, G., MacArthur, C.A. & Martin, G.R. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 84, 127-136 (1996). [ Links ]

12. Kawakami, Y. et al. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 104, 891-900 (2001). [ Links ]

13. Ohuchi, H. et al. The mesenchymal factor, FGF 10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124, 2235-2244 (1997). [ Links ]

14. Sekine, K. et al. Fgf 10 is essential for limb and lung formation. Nat Genet 21, 138-141 (1999). [ Links ]

15. Hamburger, V. Morphogenetic and axial self-differentiation of transplanted limb primordia of two day chick embryos. Journal of Experimental Zoology 77, 379-397 (1938). [ Links ]

16. Marcil, Α., Dumontier, E., Chamberland, M., Camper, S.A. & Drouin, J. Pitxl and Pitx2 are required for development of hindlimb buds. Development 130, 45-55 (2003). [ Links ]

17. Delaurier, Α., Schweitzer, R. & Logan, M. Pitxl determines the morphology of muscle, tendon, and bones of the hindlimb. Dev Biol 299, 22-34 (2006). [ Links ]

18. Gibson-Brown, J.J., Agulnik, S.I., Silver, L.M., Niswander, L. & Papaioannou, V.E. Involvement of Т-box genes Tbx2-Tbx5 in vertebrate limb specification and development. Development 125, 2499-2509 (1998). [ Links ]

19. Rodríguez-Esteban, C. et al. The Т-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398, 814-818 (1999). [ Links ]

20. Takeuchi, J.K. et al. Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds. Nature 398, 810-814 (1999). [ Links ]

21. Logan, M. & Tabin, C.J. Role of Pitxl upstream of Tbx4 in specification of hindlimb identity. Science 283, 1736-1739 (1999). [ Links ]

22. Minguillon, C, Del Buono, J. & Logan, M.P. Tbx5 and Tbx4 are not sufficient to determine limb-specific morphologies but have common roles in initiating limb outgrowth. Dev Celis 8, 75-84 (2005). [ Links ]

23. Saunders Jr, J.W. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. Journal of Experimental Zoology 108, 363-403 (1948). [ Links ]

24. Mahmood, R. et al. A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr Biol 5, 797-806 (1995). [ Links ]

25. Vogel, Α. & Tickle, C. FGF-4 maintains polarizing activity of posterior limb bud cells in vivo and in vitro. Development 119, 199-206 (1993). [ Links ]

26. Lewandoski, M., Sun, X. & Martin, G.R. Fgf8 signalling from the AER is essential for normal limb development. Nat Genet 26, 460-463 (2000). [ Links ]

27. Sun, X., Mariani, F.V. & Martin, G.R. Functions of FGF signaling from the apical ectodermal ridge in limb development. Nature 418, 501-508 (2002). [ Links ]

28. Summerbell, D. & Lewis, J.Η. Time, place and positional value in the chick limb-bud. J Embryol Exp Morphol 33, 621-643 (1975). [ Links ]

29. Wolpert, L., Tickle, C. & Sampford, M. The effect of cell killing by х-irradiation on pattern formation in the chick limb. J Embryol Exp Morphol 50, 175-193 (1979). [ Links ]

30. Dudley, AT., Ros, M.A. & Tabin, C.J. A re-examination of proximodistal patterning during vertebrate limb development. Nature 418, 539-544 (2002). [ Links ]

31. MacCabe, J.Α., Errick, J. & Saunders, J.W., Jr . Ectodermal control of the dorso ventral axis in the leg bud of the chick embryo. Dev Biol 39, 69-82 (1974). [ Links ]

32. Parr, B.A. & McMahon, A.P. Dorsalizingsignal Wnt-7a required for normal polarity of D-V and А-P axes of mouse limb. Nature 374, 350-353 (1995). [ Links ]

33. Chen, H. & Johnson, R.L. Dorsoventral patterning of the vertebrate limb: a process governed by multiple events. Cell Tissue Res 296, 67-73 (1999). [ Links ]

34. Dreyer, S. D. et al. Lmx 1b expression during joint and tendon formation: localization and evaluation of potential downstream targets. Gene Expr Patterns 4, 397-405 (2004). [ Links ]

35. Loomis, C.A., Kimmel, R.A., Tong, C.X., Michaud, J. & Joyner, A.L. Analysis of the genetic pathway leading to formation of ectopic apical ectodermal ridges in mouse Engrailed-1 mutant limbs. Development 125, 1137-1148 (1998). [ Links ]

36. Pizette, S. & Niswander, L. Early steps in limb patterning and chondrogenesis. Novartis Found Symp 232, 23-36: discussion 36-46 (2001). [ Links ]

37. Saunders, J.W. & Gasseling, M.T. New insights into the problem of pattern regulation in the limb bud of the chick embryo. Prog Clin Biol Res 110 Pt A, 67-76 (1983). [ Links ]

38. Riddle, R.D., Johnson, R.L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401-1416 (1993). [ Links ]

39. Drossopoulou, G. et al. A model for anteroposterior patterning of the vertebrate limb based on sequential long- and short-range Shh signalling and Bmp signalling. Development 127, 1337-1348 (2000) . [ Links ]

40. Charité, J., McFadden, D.G. & Olson, E.N. The bHLH transcription factor dHAND controls Sonic hedgehog expression and establishment of the zone of polarizing activity during limb development. Development 127, 2461-2470 (2000). [ Links ]

41. Huangfu, D. & Anderson, R.V. Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133, 3-14 (2006). [ Links ]

42. Litingtung, Y., Dahn, R.D., Li, Y., Fallon, J.F. & Chiang, C. Shh and GH3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418, 979-983 (2002). [ Links ]

43. te Welscher, P. et al. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 298, 827-830 (2002). [ Links ]

44. Olsen, B.R., Reginato, A.M. & Wang, W. Bone development. Annu Rev Cell Dev Biol 16, 191-220 (2000). [ Links ]

45. Bi, W., Deng, J.M., Zhang, Z., Behringer, R.R. & de Crombrugghe, B. Sox9 is required for cartilage formation. Nat Genet 22 ,85-89 (1999). [ Links ]

46. Akiyama, H., Chaboissier, M.C., Martin, J.F., Schedi, A. & de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Devie, 2813-2828 (2002). [ Links ]

47. Lefebvre, V. & de Crombrugghe, B. Toward understanding SOX9 function in chondrocyte differentiation. Matrix Bioll 16, 529-540 (1998). [ Links ]

48. Ganan, Y., Macias, D., Duterque-Coquillaud, M., Ros, Μ. Α. & Hurle, J. M. Role of TGF beta s and BMPs as signals controlling the position of the digits and the areas of interdigital cell death in the developing chick limb autopod. Development 122, 2349-2357 (1996). [ Links ]

49. Chimal-Monroy, J. et al. Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. Dev Biol 257, 292-301 (2003). [ Links ]

50. Zuzarte-Luis, V. et al. A new role for BMP5 during limb development acting through the synergic activation of Smad and MAPR pathways. Dev Biol 212, 39-52 (2004). [ Links ]

51. Merino, R. et al. Morphogenesis of digits in the avian limb is controlled by FGFs, TGFbetas, and noggin through BMP signaling. Dev Biol 200, 35-45 (1998). [ Links ]

52. Merino, R. et al. Control of digit formation by activin signalling. Development 126, 2161-2170 (1999). [ Links ]

53. Rodriguez-Leon, J. et al. Retinole acid regulates programmed cell death through BMP signalling. Nat Cell Biol 1, 125-126 (1999). [ Links ]

54. Mukhopadhyay, M. et al. Dickkopf 1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1, 423-434 (2001). [ Links ]

55. Merino, R. et al. The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 126, 5515-5522 (1999). [ Links ]

56. Ganan, Y., Macias, D., Basco, R.D., Merino, R. & Hurle, J.M. Morphological diversity of the avian foot is related with the pattern of msx gene expression in the developing autopod. Dev Biol 196, 33-41 (1998). [ Links ]

57. Weatherbee, S.D., Behringer, R.R., Rasweiler, J.J. & Niswander, L.A. Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc Natl Acad Sci USA 103, 15103-15107 (2006). [ Links ]

58. Harfe, B.D. et al. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118,517-528 (2004). [ Links ]

59. Suzuki, T., Takeuchi, J., Roshiba-Takeuchi, R. & Ogura, T. Tbx Genes Specify Posterior Digit Identity through Shh and BMP Signaling. Dev Cell , 43-53 (2004) . [ Links ]

60. Dahn, R.D. & Fallon, J.F. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science 289, 438-441 (2000). [ Links ]

61 .Sanz-Ezquerro, J.J. & Tickle, C. Fgf signaling controls the number of phalanges and tip formation in developing digits. Curr Biol 13, 1830-1836 (2003). [ Links ]

Recibido: 07 de Noviembre de 2006; Aprobado: 29 de Noviembre de 2006

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons