SciELO - Scientific Electronic Library Online

 
vol.19 issue3Wikipedia-based Learning Path GenerationInverse Deconvolution Estimation Filter author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

On-line version ISSN 2007-9737Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.3 Ciudad de México Jul./Sep. 2015

 

Artículos

 

Wind Flow Analysis of Twisted Savonius Micro-Turbine Array

 

Jesús Antonio Álvarez-Cedillo, Mauricio Olguín-Carbajal, Juan Carlos Herrera-Lozada, Ramón Silva-Ortigoza, Jacobo Sandoval-Gutiérrez

 

Instituto Politécnico Nacional, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Mexico City, México. jaalvarez@ipn.mx, molguinc@ipn.mx, jlozada@ipn.mx, rsilvao@ipn.mx, jacobosandoval@hotmail.com

Corresponding author is Jesús Antonio Álvarez-Cedillo.

 

Article received on 14/05/2014.
Accepted on 14/01/2015.

 

Abstract

This paper provides a computational analysis of wind impact on different geometric configurations of Savonius turbines proposed and previously studied in specialized literature. As a result of comparative analysis of turbines, we performed a flow analysis over a micro-turbine array, proposed a twisted Savonius turbine respecting its original profile, and subjected it to a comparative analysis of its performance against conventional turbines. Our new proposal of Savonius turbines stands out due to its lower residual turbulence. The turbine dimensions are suited to the geometric relationships previously analyzed, and they are suggested in a way to respect the original profile of each turbine. The size of each turbine is small since its application is proposed for power generation in a low power array which can be placed on any building as part of its outer walls.

Keywords: Wind energy, Savonius turbine, low-power turbines, aerodynamics, fluid analysis.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work has been funded by Instituto Politécnico Nacional.

 

References

1. Chang, L. (2002). Wind Energy Conversion System. IEEE Canadian Review, pp. 12-16.

2. Sargolzaei, J. (2007). Prediction of the Power Ratio in Wind Turbine Savonius Rotors Using Artificial Neural Networks. International Journal of Energy and Environment, Vol. 1, No. 2, pp. 51-55.         [ Links ]

3. Sargolzaei, J. & Kianifar, A. (2010). Neuro-fuzzy modeling tools for estimation of torque in Savonius rotor wind turbine. Advances in Engineering Software, Vol. 41, No. 4, pp. 619-626, doi: 10.1016/j.advengsoft.2009.12.002.         [ Links ]

4. Eriksson, S., Bernhoff, H. & Leijon, M. (2006). Evaluation of different turbine concepts for wind power. Renewable and Sustainable Energy Reviews, Vol. 12, No. 5, pp. 1419-1434, doi: 10.1016/j.rser.2006.05.017.         [ Links ]

5. Sargolzaei, J. & Kianifar, A. (2009). Modeling and simulation of wind turbine Savonius rotors using artificial neural networks for estimation of the power ratio and torque. Simulation Modeling Practice and Theory, Vol. 17, No. 7, pp. 1290-1298. doi: 10.1016/j.simpat.2009.05.003.         [ Links ]

6. Kamoji, M.A., Kedare, S., & Prabhu, S. (2008). Experimental investigations on single stage modified Savonius rotor. Applied Energy, Vol. 86, No. 7-8, pp. 1064-107, doi: 10.1016/j.apenergy.2008.09.019.         [ Links ]

7. Savonious, S.J. (1931). The S-rotor and its application. Mechanical Engineering, Vol. 53, No. 5, pp. 333-338.         [ Links ]

8. Hayashi, T., Li, Y., Hara, Y., & Suzuki, K. (2005). Wind tunnel tests on a three-stage out-phase Savonius rotor. JSME International Journal , Vol. 48, No. 1, pp. 9-16.         [ Links ]

9. Menet, J. & Bourabaa, N. (2004). Increase in the Savonious rotors efficiency via a parametric investigation. Proc. of European wind energy, London, U.K.         [ Links ]

10. Nakajima, M., Lio, S., & Ikeda, T. (2008). Performance of Savonius rotor for environmentally friendly hydraulic turbine. Journal of Fluid Science and Technology, Vol. 3, No. 3, pp. 420-429, doi: 10.1299/jfst.3.420.         [ Links ]

11. Nakajima, M., Lio, S., & Ikeda, T. (2008). Performance of Double-step Savonius Rotor for Environmentally Friendly Hydraulic Turbine. Journal of Fluid Science and Technology, Vol. 3, No. 3, pp. 410-419.         [ Links ]

12. Saha, U.K. & Rajkumar, M. (2006). On the performance analysis of Savonius rotor with twisted blades. Renewable Energy, Vol. 31, No. 11, pp. 1776-1788, doi: 10.1016/j.renene.2005.08.030.         [ Links ]

13. Hassan, M., Iqbal, T., Khan, N., Hinchey, M., & Masek, V. (2010). CFD Analysis of a Twisted Savonius Turbine. Proc. of NECEC, St. John's, Newfoundland, Canada.         [ Links ]

14. Wang, S. & Li, A. (2010). Parameterizedly Design Cam Based on Excel and SolidWorks and Finite element analysis and Simulation by COSMOS. E-Product E-Service and E-Entertainment (ICEEE), doi: 10.1109/ICEEE.2010.5660856.         [ Links ]

15. Tarmizi, W. & Faizura, W. (2010). Modeling and Simulation of a Multi-Fingered Robot Hand. International Conference on Intelligent and Advanced Systems (ICIAS 2010), pp. 15-17, Kuala Lumpur, Malaysia, doi: 10.1109/ICIAS.2010.5716220.         [ Links ]

16. Hira, K. & Levent, M. (2009). Design of Medical Robotic Operating Rooms by SolidWorks. Biomedical Engineering Meeting (BIYOMUT 2009), doi: 10.1109/BIYOMUT.2009.5130327.         [ Links ]

17. Fuqin, Y., Hao, C., & Degong, C. (2009). Kinematic Simulation of a Spatial Staggered Joint Based on COSMOS Motion. Intelligent Human-Machine Systems and Cybernetics (IHMSC'09), doi: 10.1109/IHMSC.2009.233.         [ Links ]

18. The Royal Academy of Engineering (2008). Wind Turbine Power Calculations.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License