SciELO - Scientific Electronic Library Online

 
vol.19 issue3Autonomous Motion Planning for Avatar LimbsModeling and Pose Control of Robotic Manipulators and Legs using Conformal Geometric Algebra author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.3 México Jul./Sep. 2015

 

Artículos

 

Design and Implementation of an Intelligent System for Controlling a Robotic Hospital Bed for Patient Care Assistance

 

Eduardo Vázquez-Santacruz, William Cruz-Santos, Mariano Gamboa-Zúñiga

 

CGSTIC Cinvestav IPN, México DF, México. evazquez@gdl.cinvestav.mx, cwilliam@computacion.cs.cinvestav.mx, mgamboaz@cinvestav.mx

Corresponding author is Eduardo Vázquez-Santacruz.

 

Article received on 02/12/2014.
Accepted on 21/04/2015.

 

Abstract

In this article we propose an intelligent system (IS) for automatic movements of a robotic-assisted hospital bed, it is based on posture classification and recognition using mattress pressure sensors. The proposed IS allows to program a sequence of movements of the robotic bed that are executed automatically through electric actuators in response to the pressure distribution of a patient on the bed. The experimental results show that programmed movements are useful in preventing bed-sores in patients who stay in bed for extended periods of time.

Keywords: Pattern classification, support vector machines, pressure sensors, intelligent systems, assistive robotics.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

We would like to thank the CGSTIC-Cinvestav IPN team for making this development possible. We are also grateful to the medical staff of Hospital Juárez of Mexico for their help.

 

References

1. Arcelus, A., Herry, C. L., Goubran, R. A., Knoefel, F., Sveistrup, H., & Bilodeau, M. (2009). Determination of sit-to-stand transfer duration using bed and floor pressure sequences. IEEE Trans. Biomed. Engineering, Vol. 56, No. 10, pp. 2485-2492.         [ Links ]

2. Byun, H. & Lee, S.-W. (2003). A survey on pattern recognition applications of support vector machines. International Journal of Pattern Recognition and Artificial Intelligence, Vol. 17, No. 3, pp. 459-486.         [ Links ]

3. Chica, M., Campoy, P., Pérez, M. A., Rodríguez, T., Rodríguez, R., & Valdemoros, O. (2013). Corrigendum to "real-time recognition of patient intentions from sequences of pressure maps using artificial neural networks" [computers in biology and medicine 42 (2012) 364-375]. Comp. in Bio. and Med., Vol. 43, No. 9, pp. 1302.         [ Links ]

4. Dalal, N. & Triggs, B. (2005). Histograms of oriented gradients for human detection. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), volume 1, IEEE Computer Society, Washington, DC, USA, pp. 886-893.         [ Links ]

5. DeVocht, J. W., Wilder, D. G., Bandstra, E. R., & Spratt, K. F. (2006). Biomechanical evaluation of four different mattresses. Applied Ergonomics, Vol. 37, No. 3, pp. 297-304.         [ Links ]

6. Grimm, R., Bauer, S., Sukkau, J., Hornegger, J., & Greiner, G. (2012). Markerless estimation of patient orientation, posture and pose using range and pressure imaging. Int. J. Computer Assisted Radiology and Surgery, Vol. 7, No. 6, pp. 921-929.         [ Links ]

7. Hao, J., Jayachandran, M., Kng, P., Foo, S., Aung Aung, P., & Cai, Z. (2010). Fbg-based smart bed system for healthcare applications. Frontiers of Optoelectronics in China, Vol. 3, No. 1, pp. 78-83.         [ Links ]

8. Idzikowski, C. (2010). Learn to Sleep Well.         [ Links ]

9. Lowe, D. G. (1999). Object recognition from local scale-invariant features. ICCV, pp. 1150-1157.         [ Links ]

10. Seo, K.-H., Choi, T.-Y., & Oh, C. (2011). Development of a robotic system for the bed-ridden. Mechatronics, Vol. 21, No. 1, pp. 227-238.         [ Links ]

11. Textiles, S. T. S. (2013). Webpage:. http://www.sensingtex.com/. [Online; accessed 12-Dicember-2013].

12. Townsend, D. I., Holtzman, M., Goubran, R. A., Frize, M., & Knoefel, F. (2011). Relative thresholding with under-mattress pressure sensors to detect central apnea. IEEE T. Instrumentation and Measurement, Vol. 60, No. 10, pp. 3281-3289.         [ Links ]

13. Vázquez-Santacruz, E. & Gamboa-Zúñiga, M. (2013). A diagnosis methodology for assistive technology development. 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 163-169.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License