SciELO - Scientific Electronic Library Online

vol.19 issue3EditorialIntegration of an Inverse Optimal Neural Controller with Reinforced-SLAM for Path Panning and Mapping in Dynamic Environments author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.3 México Jul./Sep. 2015




Neural Control for a Differential Drive Wheeled Mobile Robot Integrating Stereo Vision Feedback


Michel López-Franco1, Edgar N. Sánchez1, Alma Y. Alanis2, Carlos López-Franco2


1 Instituto Politécnico Nacional, CINVESTAV, Unidad Guadalajara, Jalisco, México.,

2 Universidad de Guadalajara, CUCEI, Jalisco, México.,

Corresponding author is Michel López-Franco.


Article received on 24/11/2014.
Accepted 14/04/2015.



This paper proposes a tracking control method for a differential drive wheeled mobile robot with nonholonomic constraints with an inverse optimal neural controller. It is based on two techniques: first, an identifier using a discrete-time recurrent high-order neural network (RHONN) trained with an extended Kalman filter (EKF) algorithm is employed; second, an inverse optimal control is used to avoid solving the Hamilton Jacobi Bellman (HJB) equation. The desired trajectory of the robot is computed during the navigation process using a stereo camera sensor.

Keywords: Neural control, tracking control, differential drive steering, identifier, inverse optimal control.





The authors thank CONACYT, Mexico, for the support through Projects 103191Y, 156567Y, and INFR- 229696.



1. Siegwart, R. & Nourbakhsh, I.R. (2004). Introduction to Autonomous Mobile Robots.         [ Links ]

2. Tzafestas, S.G., (2013). Introduction to Mobile Robot Control. Elsevier, Oxford. doi: 10.1016/B978-0-12-417049-0.00025-0.         [ Links ]

3. El-Osery, A. & Prevost, J. (2015). Control and Systems Engineering: A Report on Four Decades of Contributions. Springer, Vol. 27.         [ Links ]

4. Fang, Y., Liu, X., & Zhang, X. (2012). Adaptive active visual servoing of nonholonomic mobile robots. IEEE Transactions on Industrial Electronics, Vol. 59, No. 1, pp. 486-497, doi: 10.1109/TIE.2011.2143380.         [ Links ]

5. Fu, W., Hadj-Abdelkader, H., & Colle, E. (2013). Visual servoing based mobile robot navigation able to deal with complete target loss. 18th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 502-507, doi: 10.1109/MMAR.2013.6669961.         [ Links ]

6. Liang, X., Wang, H., & Chen, W. (2014). Adaptive image-based visual servoing of wheeled mobile robots with fixed camera configuration. IEEE International Conference on Robotics and Automation (ICRA), pp. 6199-6204, doi: 10.1109/ICRA.2014.6907773.         [ Links ]

7. Cook, G. (2011). Mobile Robots: Navigation, Control and Remote Sensing. Wiley-IEEE Press, Hoboken, NJ, USA.         [ Links ]

8. Holland, J. (2003). Designing Autonomous Mobile Robots: Inside the Mind of an Intelligent Machine. Newnes.         [ Links ]

9. Das, T. & Kar, I. (2006). Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Transactions on Control Systems Technology, Vol. 14, No. 3, pp. 501-510, doi: 10.1109/TCST.2006.872536.         [ Links ]

10. Do, K., Jiang, Z., & Pan, J. (2004). Simultaneous tracking and stabilization of mobile robots: an adaptive approach. IEEE Transactions on Automatic Control, Vol. 49, No. 7, pp. 1147-1151, ISSN 0018-9286, doi: 10.1109/TAC.2004.831139.         [ Links ]

11. Park, B.S., Yoo, S.J., Park, J.B., & Choi, Y.H. (2010). A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots. IEEE Transactions on Control Systems Technology, Vol. 18, No. 5, pp. 1199-1206, doi: 10.1109/TCST.2009.2034639.         [ Links ]

12. Kirk, D.E. (2004). Optimal Control Theory: An Introduction. Dover Publications.         [ Links ]

13. Basar, T. & Olsder, G.J. (1995). Dynamic Noncooperative Game Theory. Academic Press, New York, NY, USA, 2 ed.         [ Links ]

14. Lewis, F.L. & Syrmos, V.L. (1995). Optimal Control. John Wiley & Sons, Inc., New York, NY, USA, 1st ed.         [ Links ]

15. Al-Tamimi, A., Lewis, F., & Abu-Khalaf, M. (2008) . Discrete-time nonlinear hjb solution using approximate dynamic programming: Convergence proof. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 38, No. 4, pp. 943-949, doi: 10.1109/TSMCB.2008.926614.         [ Links ]

16. Ohsawa, T., Bloch, A., & Leok, M. (2010). Discrete Hamilton-Jacobi theory and discrete optimal control. 49th IEEE Conference on Decision and Control (CDC), pp. 5438-5443, doi: 10.1109/CDC.2010.5717665.         [ Links ]

17. Rovithakis, G.A. & Chistodoulou, M.A. (2000). Adaptive Control with Recurrent High-Order Neural Networks. Springer Verlag, Berlin, Germany.         [ Links ]

18. García-Hernández, R. (2005). Control Neuronal Descentralizado Discreto para Manipuladores Robóticos. PhD thesis, Cinvestav, Unidad Guadalajara, Guadalajara, Jalisco, México.         [ Links ]

19. Williams, R.J. & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, Vol. 1, No. 2, pp. 270-280, doi: 10.1162/neco.1989.1.2.270.         [ Links ]

20. Leung, C.-S. & Chan, L.-W. (2003). Dual extended Kalman filtering in recurrent neural networks. Neural Networks, Vol. 16, No. 2, pp. 223-239, doi: 10.1016/S0893-6080(02)00230-7.         [ Links ]

21. Alanis, A.Y., Sánchez, E.N., & Loukianov, A.G. (2009) . Real-time output tracking for induction motors by recurrent high-order neural network control. 17th Mediterranean Conference on Control and Automation (MED'09), pp. 868-873, doi: 10.1109/MED.2009.5164654.         [ Links ]

22. Feldkamp, L.A., Prokhorov, D.V., & Feldkamp, T.M. (2003). Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks. Neural Netw., Vol. 16, No. 5-6, pp. 683-689, doi: 10.1016/S0893-6080(03)00127-8.         [ Links ]

23. Grover, R. & Hwang, P.Y.C. (1992). Introduction to Random Signals and Applied Kalman Filtering. John Wiley and Sons, NY.         [ Links ]

24. Song, Y., Sun, Z., Liao, X., & Zhang, R. (2006). Memory-based control of nonlinear dynamic systems part ii- applications. 1st IEEE Conference on Industrial Electronics and Applications, pp. 1-6, doi: 10.1109/ICIEA.2006. 257071.         [ Links ]

25. Poznyak, A.S., Sánchez, E.N., & Yu, W. (2001). Differential Neural Networks for Robust Nonlinear Control. World Scientific, Singapore.         [ Links ]

26. Felix, R.A., Sánchez, E.N., & Loukianov, A.G. (2005). Avoiding controller singularities in adaptive recurrent neural control. Proceedings of the 16th IFAC World Congress, Prague, Czech Republic.         [ Links ]

27. Lin, W. & Byrnes, C.I. (1994). Design of discrete-time nonlinear control systems via smooth feedback. IEEE Transactions on Automatic Control, Vol. 39, No. 11, pp. 2340-2346, doi: 10.1109/9.333790.         [ Links ]

28. Haykin, S. (2001). Kalman Filtering and Neural Networks. John Wiley and Sons, NY.         [ Links ]

29. Hutchinson, S., Hager, G., & Corke, P. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, Vol. 12, No. 5, pp. 651-670, doi: 10.1109/70.538972.         [ Links ]

30. Espiau, B., Chaumette, F., & Rives, P. (1992). A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation, Vol. 8, No. 3, pp. 313-326, doi: 10.1109/70.143350.         [ Links ]

31. Chaumette, F. & Hutchinson, S. (2006). Visual servo control, part i: Basic approaches. IEEE Robotics and Automation Magazine, Vol. 13, No. 4, pp. 82-90, doi: 10.1109/MRA.2006.250573.         [ Links ]

32. González, R.C. & Woods, R.E. (2006). Digital Image Processing. 3rd edition, Prentice-Hall Inc., Upper Saddle River, NJ, USA.         [ Links ]

33. González, R.C., Woods, R.E., & Eddins, S.L. (2003). Digital Image Processing Using MATLAB. Prentice-Hall Inc., Upper Saddle River, NJ, USA.         [ Links ]

34. Lu, F. & Milios, E. (1994). Robot pose estimation in unknown environments by matching 2d range scans. IEEE Conference on Computer Vision and Pattern Recognition (CVPR'94), pp. 935-938, doi: 10.1109/CVPR.1994.323928.         [ Links ]

35. Canudas de Wit, E., Siciliano, B., & Bastian, G. (1997). Theory of Robot Control. Springer-Verlag.         [ Links ]

36. Salome, A., Alanis, A.Y., & Sánchez, E.N. (2011). Discrete-time sliding mode controllers for nonholonomic mobile robots trajectory tracking problem. 8th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE), pp. 1-6, doi: 10.1109/ICEEE.2011.6106564.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License