SciELO - Scientific Electronic Library Online

 
vol.19 issue3EditorialIntegration of an Inverse Optimal Neural Controller with Reinforced-SLAM for Path Panning and Mapping in Dynamic Environments author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.3 México Jul./Sep. 2015

 

Artículos

 

Neural Control for a Differential Drive Wheeled Mobile Robot Integrating Stereo Vision Feedback

 

Michel López-Franco1, Edgar N. Sánchez1, Alma Y. Alanis2, Carlos López-Franco2

 

1 Instituto Politécnico Nacional, CINVESTAV, Unidad Guadalajara, Jalisco, México. mlopez@gdl.cinvestav.mx, sanchez@gdl.cinvestav.mx

2 Universidad de Guadalajara, CUCEI, Jalisco, México. almayalanis@gmail.com, carlos.lopez@cucei.udg.mx

Corresponding author is Michel López-Franco.

 

Article received on 24/11/2014.
Accepted 14/04/2015.

 

Abstract

This paper proposes a tracking control method for a differential drive wheeled mobile robot with nonholonomic constraints with an inverse optimal neural controller. It is based on two techniques: first, an identifier using a discrete-time recurrent high-order neural network (RHONN) trained with an extended Kalman filter (EKF) algorithm is employed; second, an inverse optimal control is used to avoid solving the Hamilton Jacobi Bellman (HJB) equation. The desired trajectory of the robot is computed during the navigation process using a stereo camera sensor.

Keywords: Neural control, tracking control, differential drive steering, identifier, inverse optimal control.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

The authors thank CONACYT, Mexico, for the support through Projects 103191Y, 156567Y, and INFR- 229696.

 

References

1. Siegwart, R. & Nourbakhsh, I.R. (2004). Introduction to Autonomous Mobile Robots.         [ Links ]

2. Tzafestas, S.G., (2013). Introduction to Mobile Robot Control. Elsevier, Oxford. doi: 10.1016/B978-0-12-417049-0.00025-0.         [ Links ]

3. El-Osery, A. & Prevost, J. (2015). Control and Systems Engineering: A Report on Four Decades of Contributions. Springer, Vol. 27.         [ Links ]

4. Fang, Y., Liu, X., & Zhang, X. (2012). Adaptive active visual servoing of nonholonomic mobile robots. IEEE Transactions on Industrial Electronics, Vol. 59, No. 1, pp. 486-497, doi: 10.1109/TIE.2011.2143380.         [ Links ]

5. Fu, W., Hadj-Abdelkader, H., & Colle, E. (2013). Visual servoing based mobile robot navigation able to deal with complete target loss. 18th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 502-507, doi: 10.1109/MMAR.2013.6669961.         [ Links ]

6. Liang, X., Wang, H., & Chen, W. (2014). Adaptive image-based visual servoing of wheeled mobile robots with fixed camera configuration. IEEE International Conference on Robotics and Automation (ICRA), pp. 6199-6204, doi: 10.1109/ICRA.2014.6907773.         [ Links ]

7. Cook, G. (2011). Mobile Robots: Navigation, Control and Remote Sensing. Wiley-IEEE Press, Hoboken, NJ, USA.         [ Links ]

8. Holland, J. (2003). Designing Autonomous Mobile Robots: Inside the Mind of an Intelligent Machine. Newnes.         [ Links ]

9. Das, T. & Kar, I. (2006). Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Transactions on Control Systems Technology, Vol. 14, No. 3, pp. 501-510, doi: 10.1109/TCST.2006.872536.         [ Links ]

10. Do, K., Jiang, Z., & Pan, J. (2004). Simultaneous tracking and stabilization of mobile robots: an adaptive approach. IEEE Transactions on Automatic Control, Vol. 49, No. 7, pp. 1147-1151, ISSN 0018-9286, doi: 10.1109/TAC.2004.831139.         [ Links ]

11. Park, B.S., Yoo, S.J., Park, J.B., & Choi, Y.H. (2010). A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots. IEEE Transactions on Control Systems Technology, Vol. 18, No. 5, pp. 1199-1206, doi: 10.1109/TCST.2009.2034639.         [ Links ]

12. Kirk, D.E. (2004). Optimal Control Theory: An Introduction. Dover Publications.         [ Links ]

13. Basar, T. & Olsder, G.J. (1995). Dynamic Noncooperative Game Theory. Academic Press, New York, NY, USA, 2 ed.         [ Links ]

14. Lewis, F.L. & Syrmos, V.L. (1995). Optimal Control. John Wiley & Sons, Inc., New York, NY, USA, 1st ed.         [ Links ]

15. Al-Tamimi, A., Lewis, F., & Abu-Khalaf, M. (2008) . Discrete-time nonlinear hjb solution using approximate dynamic programming: Convergence proof. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 38, No. 4, pp. 943-949, doi: 10.1109/TSMCB.2008.926614.         [ Links ]

16. Ohsawa, T., Bloch, A., & Leok, M. (2010). Discrete Hamilton-Jacobi theory and discrete optimal control. 49th IEEE Conference on Decision and Control (CDC), pp. 5438-5443, doi: 10.1109/CDC.2010.5717665.         [ Links ]

17. Rovithakis, G.A. & Chistodoulou, M.A. (2000). Adaptive Control with Recurrent High-Order Neural Networks. Springer Verlag, Berlin, Germany.         [ Links ]

18. García-Hernández, R. (2005). Control Neuronal Descentralizado Discreto para Manipuladores Robóticos. PhD thesis, Cinvestav, Unidad Guadalajara, Guadalajara, Jalisco, México.         [ Links ]

19. Williams, R.J. & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, Vol. 1, No. 2, pp. 270-280, doi: 10.1162/neco.1989.1.2.270.         [ Links ]

20. Leung, C.-S. & Chan, L.-W. (2003). Dual extended Kalman filtering in recurrent neural networks. Neural Networks, Vol. 16, No. 2, pp. 223-239, doi: 10.1016/S0893-6080(02)00230-7.         [ Links ]

21. Alanis, A.Y., Sánchez, E.N., & Loukianov, A.G. (2009) . Real-time output tracking for induction motors by recurrent high-order neural network control. 17th Mediterranean Conference on Control and Automation (MED'09), pp. 868-873, doi: 10.1109/MED.2009.5164654.         [ Links ]

22. Feldkamp, L.A., Prokhorov, D.V., & Feldkamp, T.M. (2003). Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks. Neural Netw., Vol. 16, No. 5-6, pp. 683-689, doi: 10.1016/S0893-6080(03)00127-8.         [ Links ]

23. Grover, R. & Hwang, P.Y.C. (1992). Introduction to Random Signals and Applied Kalman Filtering. John Wiley and Sons, NY.         [ Links ]

24. Song, Y., Sun, Z., Liao, X., & Zhang, R. (2006). Memory-based control of nonlinear dynamic systems part ii- applications. 1st IEEE Conference on Industrial Electronics and Applications, pp. 1-6, doi: 10.1109/ICIEA.2006. 257071.         [ Links ]

25. Poznyak, A.S., Sánchez, E.N., & Yu, W. (2001). Differential Neural Networks for Robust Nonlinear Control. World Scientific, Singapore.         [ Links ]

26. Felix, R.A., Sánchez, E.N., & Loukianov, A.G. (2005). Avoiding controller singularities in adaptive recurrent neural control. Proceedings of the 16th IFAC World Congress, Prague, Czech Republic.         [ Links ]

27. Lin, W. & Byrnes, C.I. (1994). Design of discrete-time nonlinear control systems via smooth feedback. IEEE Transactions on Automatic Control, Vol. 39, No. 11, pp. 2340-2346, doi: 10.1109/9.333790.         [ Links ]

28. Haykin, S. (2001). Kalman Filtering and Neural Networks. John Wiley and Sons, NY.         [ Links ]

29. Hutchinson, S., Hager, G., & Corke, P. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, Vol. 12, No. 5, pp. 651-670, doi: 10.1109/70.538972.         [ Links ]

30. Espiau, B., Chaumette, F., & Rives, P. (1992). A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation, Vol. 8, No. 3, pp. 313-326, doi: 10.1109/70.143350.         [ Links ]

31. Chaumette, F. & Hutchinson, S. (2006). Visual servo control, part i: Basic approaches. IEEE Robotics and Automation Magazine, Vol. 13, No. 4, pp. 82-90, doi: 10.1109/MRA.2006.250573.         [ Links ]

32. González, R.C. & Woods, R.E. (2006). Digital Image Processing. 3rd edition, Prentice-Hall Inc., Upper Saddle River, NJ, USA.         [ Links ]

33. González, R.C., Woods, R.E., & Eddins, S.L. (2003). Digital Image Processing Using MATLAB. Prentice-Hall Inc., Upper Saddle River, NJ, USA.         [ Links ]

34. Lu, F. & Milios, E. (1994). Robot pose estimation in unknown environments by matching 2d range scans. IEEE Conference on Computer Vision and Pattern Recognition (CVPR'94), pp. 935-938, doi: 10.1109/CVPR.1994.323928.         [ Links ]

35. Canudas de Wit, E., Siciliano, B., & Bastian, G. (1997). Theory of Robot Control. Springer-Verlag.         [ Links ]

36. Salome, A., Alanis, A.Y., & Sánchez, E.N. (2011). Discrete-time sliding mode controllers for nonholonomic mobile robots trajectory tracking problem. 8th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE), pp. 1-6, doi: 10.1109/ICEEE.2011.6106564.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License