SciELO - Scientific Electronic Library Online

 
vol.19 issue2PID Control Law for Trajectory Tracking Error Using Time-Delay Adaptive Neural Networks for Chaos Synchronization author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.2 México Apr./Jun. 2015

http://dx.doi.org/10.13053/CyS-19-2-1999 

Reporte de tesis doctoral

 

A Counting Logic for Trees

 

Everardo Bárcenas

 

CONACYT - Universidad Veracruzana, México. iebarcenaspa@conacyt.mx

Corresponding author is Everardo Bárcenas.

 

Article received on 09/07/2014.
Accepted on 21/04/2015.

 

Abstract

It has been recently shown that the fully enriched µ-calculus, an expressive modal logic, is undecidable. In the current work, we prove that this result does not longer hold when considering finite tree models. This is achieved with the introduction of an extension of the fully enriched µ-calculus for trees with numerical constraints. Contrastively with graded modalities, which restrict the occurrence of immediate successor nodes only, the logic introduced in this paper can concisely express numerical constraints on any tree region, as for instance the ancestor or descendant nodes. In order to show that the logic is in EXPTIME, we also provide a corresponding satisfiability algorithm. By succinct reductions to the logic, we identify several decidable extensions of regular tree languages with counting and interleaving operators. It is also shown that XPath extensions with counting constructs on regular path queries can be concisely captured by the logic. Finally, we show that several XML reasoning problems (XPath queries with schemas), such as emptiness and containment, can be optimally solved with the satisfiability algorithm.

Keywords: Automated reasoning, modal logics, arithmetical constraints, formal languages, XPath.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Bárcenas, E. (2011). Raisonnement automatisè sur les arbres avec des contraintes de cardinalite. Ph.D. thesis, University de Grenoble.         [ Links ]

2. Bárcenas, E., Genèves, P., Layaïda, N., & Schmitt, A. (2011). Query reasoning on trees with types, interleaving, and counting. Walsh, T., editor, IJCAI, IJCAI/AAAI, pp. 718-723.         [ Links ]

3. Bárcenas, E. & Lavalle, J. (2013). Expressive reasoning on tree structures: Recursion, inverse programs, presburger constraints and nominals. Castro, F., Gelbukh, A. F., & González, M., editors, MI-CAI (1), volume 8265 of Lecture Notes in Computer Science, Springer, pp. 80-91.         [ Links ]

4. Bárcenas, E. & Lavalle, J. (2014). Global numerical constraints on tress. Logical Methods in Computer Science, Vol. 10, No. 2.         [ Links ]

5. Bianco, A., Mogavero, F., & Murano, A. (2009). Graded computation tree logic. LICS, IEEE Computer Society, pp. 342-351.         [ Links ]

6. Bonatti, P. A., Lutz, C., Murano, A., & Vardi, M. Y. (2006). The complexity of enriched µ-calculi. Bugliesi, M., Preneel, B., Sassone, V., & Wegener, I., editors, ICALP (2), volume 4052 of Lecture Notes in Computer Science, Springer, pp. 540-551.         [ Links ]

7. Calvanese, D., De Giacomo, G., Lenzerini, M., & Vardi, M. Y. (2010). Node selection query languages fortrees. Fox, M. & Poole, D., editors, AAAI, AAAI Press.         [ Links ]

8. Dal-Zilio, S., Lugiez, D., & Meyssonnier, C. (2004). A logic you can count on. Jones, N. D. & Leroy, X., editors, POPL, ACM, pp. 135-146.         [ Links ]

9. Demri, S. & Lugiez, D. (2006). Presburger modal logic is PSPACE-Complete. Furbach, U. & Shankar, N., editors, IJCAR, volume 4130 of Lecture Notes in Computer Science, Springer, pp. 541-556.         [ Links ]

10. Ferrante, A., Napoli, M., & Parente, M. (2009). Graded-CTL: Satisfiability and symbolic model checking. Breitman, K. & Cavalcanti, A., editors, ICFEM, volume 5885 of Lecture Notes in Computer Science, Springer, pp. 306-325.         [ Links ]

11. Figueira, D., Figueira, S., & Areces, C. (2014). Basic model theory of xpath on data trees. Schweikardt, N., Christophides, V., & Leroy, V., editors, ICDT, OpenProceedings.org, pp. 50-60.         [ Links ]

12. Gelade, W., Martens, W., & Neven, F. (2009). Optimizing schema languages for XML: Numerical constraints and interleaving. SIAM J. Comput., Vol. 38, No. 5, pp. 2021-2043.         [ Links ]

13. Genèves, P., Layaïda, N., & Schmitt, A. (2007). Efficient static analysis of XML paths and types. Ferrante, J. & McKinley, K. S., editors, PLDI, ACM, pp. 342-351.         [ Links ]

14. Gruber, H. & Holzer, M. (2009). Tight bounds on the descriptional complexity of regular expressions. Diekert, V. & Nowotka, D., editors, Developments in Language Theory, volume 5583 of Lecture Notes in Computer Science, Springer, pp. 276-287.         [ Links ]

15. Henriksen, J., Jensen, J., Jorgensen, M., Klarlund, N., Paige, B., Rauhe, T., & Sandholm, A. (1995). Mona: Monadic second-order logic in practice. Tools and Algorithms for the Construction and Analysis of Systems, First International Workshop, TACAS '95, LNCS 1019.         [ Links ]

16. Hosoya, H., Vouillon, J., & Pierce, B. C. (2005). Regular expression types for XML. ACM Trans. Program. Lang. Syst., Vol. 27, No. 1, pp. 46-90.         [ Links ]

17. Janin, D. & Walukiewicz, I. (1996). On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic. Montanari, U. & Sassone, V., editors, CONCUR, volume 1119 of Lecture Notes in Computer Science, Springer, pp. 263-277.         [ Links ]

18. Kilpeläinen, P. & Tuhkanen, R. (2003). Regular expressions with numerical occurrence indicators -preliminary results. Kilpeläinen, P. & Päivinen, N., editors, SPLST, University of Kuopio, Department of Computer Science, pp. 163-173.         [ Links ]

19. Lipshitz, L. (1976). The diophantine problem for addition and divisibility. Transaction of the American Mathematical Society, Vol. 235, pp. 271-283.         [ Links ]

20. Manna, Z., Sipma, H. B., & Zhang, T. (2007). Verifying balanced trees. Artëmov, S. N. & Nerode, A., editors, LFCS, volume 4514 of Lecture Notes in Computer Science, Springer, pp. 363-378.         [ Links ]

21. Marx, M. (2005). Conditional XPath. ACM Trans. Database Syst., Vol. 30, No. 4, pp. 929-959.         [ Links ]

22. Murata, M., Lee, D., Mani, M., & Kawaguchi, K. (2005). Taxonomy of XML schema languages using formal language theory. ACM Trans. Internet Techn., Vol. 5, No. 4, pp. 660-704.         [ Links ]

23. Seidl, H., Schwentick, T., & Muscholl, A. (2003). Numerical document queries. PODS, ACM, pp. 155-166.         [ Links ]

24. Seidl, H., Schwentick, T., Muscholl, A., & Habermehl, P. (2004). Counting in trees for free. Díaz, J., Karhumäki, J., Lepistö, A., & Sannella, D., editors, ICALP, volume 3142 of Lecture Notes in Computer Science, Springer, pp. 1136-1149.         [ Links ]

25. ten Cate, B. & Marx, M. (2009). Axiomatizing the logical core of XPath 2.0. Theory Comput. Syst., Vol. 44, No. 4, pp. 561-589.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License