SciELO - Scientific Electronic Library Online

 
vol.19 issue2A Super-Resolution Image Reconstruction using Natural Neighbor InterpolationMorphological Filtering Algorithm for Restoring Images Contaminated by Impulse Noise author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.19 n.2 México Apr./Jun. 2015

http://dx.doi.org/10.13053/CyS-19-2-1935 

Artículos

 

Hierarchical Contour Shape Analysis

 

Daniel Valdés-Amaro1 y Abhir Bhalerao2

 

1 Benemérita Universidad Autónoma de Puebla, Faculty of Computer Science, Puebla, México. daniel.valdes@cs.buap.mx

2 University of Warwick, Department of Computer Science, Coventry, UK. abhir.bhalerao@dcs.warwick.ac.uk

Corresponding author is Daniel Valdés-Amaro.

 

Article received on 31/01/2014.
Accepted on 17/04/2015.

 

Abstract

This paper introduces a novel shape representation which performs shape analysis in a hierarchical fashion using Gaussian and Laplacian pyramids. A background on hierarchical shape analysis is given along with a detailed explanation of the hierarchical method, and results are shown on natural contours. A comparison is performed between the new method and our proposed approach using Point Distribution Models with different shape sets. The paper concludes with a discussion and proposes ideas on how the new approach may be extended.

Keywords: Shape analysis, shape representation, Gaussian pyramids, shape models, brain contours.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgment

D. Valdés-Amaro would like to thank SEP-PROMEP (PROMEP/103.5/12/8136) for the financial support given to this research.

 

References

1. Aubert-Broche, B., Griffin, M., Pike, G. B., Evans, A. C., & Collins, D. L. (2006). Twenty new digital brain phantoms for creation of validation image data bases. IEEE Transactions on Medical Imaging, Vol. 25, pp. 1410-14163.         [ Links ]

2. Bhalerao, A. & Wilson, R. (2005). Local Shape Modelling Using Warplets. Kälviäinen, H., Parkkinen, J., & Kaarna, A., editors, Image Analysis, 14th Scandinavian Conference, SCIA 2005, Joensuu, Finland, June 19-22, 2005, Proceedings, volume 3540 of Lecture Notes in Computer Science, Springer, pp. 439-448.         [ Links ]

3. Burt, P. J. & Adelson, E. H. (1983). The laplacian pyramid as a compact image code. IEEE Transactions on Communications, Vol. COM-31, No. 4, pp. 532-540.         [ Links ]

4. Cootes, T. F., Edwards, G., & Taylor, C. (1999). Comparing Active Shape Models with Active Appearance Models. Proceedings of the British Machine Vision Conference, BMVC 1999, University of Nottingham, September 13-16, 1999., BMVA Press, pp. 173-182.         [ Links ]

5. Cootes, T. F., Edwards, G. J., & Taylor, C. J. (1998). Active Appearance Models. 5th European Conference on Computer Vision, volume 1407, Springer, Berlin, pp. 484-498.         [ Links ]

6. Cootes, T. F. & Taylor, C. J. (1992). Active Shape Models: Smart Snakes. British Machine Vision Conference, pp. 267-275.         [ Links ]

7. Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1992). Training models of shape from sets of examples. Proc. British Machine Vision Conference, Springer, Berlin, pp. 266-275.         [ Links ]

8. Davatzikos, C., Tao, X., & Shen, D. (2003). Hierarchical active shape models, using the wavelet transform. IEEE Transactions on Medical Imaging, Vol. 22, No. 3, pp. 414-423.         [ Links ]

9. Dietterich, T. G. (2002). Isolated leaves dataset, oregon state university web resource, url: http://web.engr.oregonstate.edu/tgd/leaves/.         [ Links ]

10. Fukunaga, K. & Koontz, W. L. G. (1970). Applications of the Karhunen-Loeve expansion to feature selection and ordering. IEEE Transactions on Computers, Vol. C-19, pp. 311-318.         [ Links ]

11. Gower, J. C. (1975). Generalized Procrustes Analysis. Psychometrika, Vol. 40, pp. 33-51.         [ Links ]

12. Mokhtarian, F., Khalili, N., & Yuen, P. (2002). Estimation of error in curvature computation on multi-scale free-form surfaces. International Journal of Computer Vision, Vol. 48, No. 2, pp. 131-149.         [ Links ]

13. Mokhtarian, F. & Mackworth, A. K. (1995). A theory of multiscale, curvature-based shape representation for planar curves. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 14, No. 8, pp. 789-805.         [ Links ]

14. Rao, A., Aljabar, P., & Rueckert, D. (2008). Hierarchical statistical shape analysis and prediction of sub-cortical brain structures. Medical Image Analysis, Vol. 12, pp. 55-68.         [ Links ]

15. Valdes-Amaro, D. A. & Bhalerao, A. (2008). Local Shape Modelling for Brain Morphometry using Curvature Scale Space. McKenna, S. & Hoey, J., editors, Proceedings of the 12th Annual Conference on Medical Image Understanding and Analysis 2008, British Machine Vision Association, pp. 64-68.         [ Links ]

16. Yu, P., Grant, P. E., Qi, Y., Han, X., Ségonne, F., Pienaar, R., Busa, E., Pacheco, J., Makris, N., Buckner, R. L., Golland, P., & Fischl, B. (2007). Cortical Surface Shape Analysis Based on Spherical Wavelets. IEEE Trans. Medical Imaging, Vol. 26, No. 4, pp. 582-597.         [ Links ]

17. Zhao, Z., Aylward, S. R., & Teoh, E. K. (2005). A novel 3D Partitioned Active Shape Model for Segmentation of Brain MR Images. Duncan, J. S. & Gerig, G., editors, Medical Image Computing and Computer-Assisted Intervention - MICCAI2005, 8th International Conference, Palm Springs, CA, USA, October 26-29, 2005, Proceedings, Part I, volume 3749 of Lecture Notes in Computer Science, Springer, pp. 221-228.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License