SciELO - Scientific Electronic Library Online

 
vol.18 issue4Periodicity-Based Computation of Optical FlowSliding Windows by Blocks for Online Wavelet Discrete Transform Implementation author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.18 n.4 México Oct./Dec. 2014

http://dx.doi.org/10.13053/CyS-18-4-2029 

Artículos regulares

 

Wikification of Learning Objects Using Metadata as an Alternative Context for Disambiguation

 

Reyna Melara Abarca1,2, Claudia Perez-Martinez3, Alexander Gelbukh1, Gabriel López Morteo3, Magally Martinez Reyes4, and Moisés Pérez López4

 

1 Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico. reynamelara@gmail.com, www.gelbukh.com

2 Escuela Superior de Cómputo (ESCOM), Instituto Politécnico Nacional, Mexico.

3 Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexico. claudia.perez92@uabc.edu.mx

4 Universidad Autónoma del Estado de México, Mexico.

 

Article received on 27/08/2014.
Accepted on 27/11/2014.

 

Abstract

We present a methodology to wikify learning objects. Our proposal is focused on two processes: word sense disambiguation and relevant phrase selection. The disambiguation process involves the use of the learning object's metadata as either additional or alternative context. This increases the probability of success when a learning object has a low quality context. The selection of relevant phrases is performed by identifying the highest values of semantic relatedness between the main subject of a learning object and the phrases. This criterion is useful for achieving the didactic objectives of the learning object.

Keywords: Word sense disambiguation, wikification, natural language processing, learning objects.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Alonso-Rorís, V.M., Santos Gago, J.M., Pérez Rodríguez, R., Rivas Costa, C., Gómez Carballa, M.A., & Anido Rifón, L. (2014). Information Extraction in Semantic, Highly-Structured, and Semi-Structured Web Sources. Polibits, Vol. 49, pp. 69-75.         [ Links ]

2. Cai, Z., Zhao, K., Zhu, K., & Wang, H. (2013). Wikification via link co-occurrence. Proceedings of the 22nd ACM international conference on Conference on information & knowledge management (CIKM '13), ACM, New York, pp. 1087-1096.         [ Links ]

3. Calvo, H., Segura-Olivares, A., & García, A. (2014). Dependency vs. Constituent Based Syntactic N-Grams in Text Similarity Measures for Paraphrase Recognition. Computación y Sistemas, Vol. 18, No. 3, pp. 517-554.         [ Links ]

4. Chiappe, A. (2009). Acerca de lo pedagógico en los objetos de aprendizaje-reflexiones conceptuales hacia la construcción de su estructura teórica. Estudios Pedagógicos, Vol. XXXV, No. 1, pp. 261-272.         [ Links ]

5. Chiappe, A., Segovia, Y., & Rincon, H.Y. (2007). Toward an instructional design model based on learning objects. Educational Technology Research and Development, Vol. 55, pp. 671-681.         [ Links ]

6. Cilibrasi, R.L. & Vitanyi, P.M.B. (2007). The Google Similarity Distance. IEEE Trans. Knowledge and Data Engineering, Vol. 19, No. 3, pp. 370-383        [ Links ]

7. Coursey, K., Mihalcea, R, & Moen, W. (2008). Automatic Keyword Extraction for Learning Object Repositories. Proceedings of the American Society for Information Science and Technology, Vol. 45, No. 1, pp. 1-10.         [ Links ]

8. Das, N., Ghosh, S., Gonçalves, T., & Quaresma, P. (2014). Comparison of Different Graph Distance Metrics for Semantic Text Based Classification. Polibits, Vol. 49, pp. 51-57.         [ Links ]

9. Guthrie, J., Wigfield, A., Barbosa, P., Perencevich, K., Taboada, A., Davis, M., Scafiddi, N., & Tonks, S. (2004). Increasing Reading Comprehension and Engagement through Concept-Oriented Reading Instruction. Journal of Educational Psychology, Vol. 96, No. 3, pp. 403-423.         [ Links ]

10. Huynh, D., Tran, D., Ma, W., & Sharma, D. (2014). Semantic Similarity Measure Using Relational and Latent Topic Features. International Journal of Computational Linguistics and Applications, Vol. 5, No. 1, pp. 11-26.         [ Links ]

11. Indurkhya, N. & Damerau, F. (eds) (2010), Handbook of Natural Language Processing. 2nd edition. CRC Press, New York.         [ Links ]

12. Koutsomitropoulos, D.A., Alexopoulos, A., Solomou, G., & Papatheodorou, T. (2010). The Use of Metadata for Educational Resources. Digital Repositories: Practices and Perspectives. D-Lib Magazine, Vol. 16.         [ Links ]

13. Mihalcea, R. & Csomain, A. (2007). Wikify!: linking documents to encyclopedic knowledge. Proceedings of the sixteenth ACM conference on Conference on information and knowledge management (CIKM '07), ACM, New York, pp. 233-242.         [ Links ]

14. Milne, D. & Witten, I. (2008). An Effective, Low-Cost Measure of Semantic Relatedness Obtained from Wikipedia Links. Association for the Advancement of Artificial Intelligence.         [ Links ]

15. Milne, D. & Witten, I. (2008). Learning to link with Wikipedia. Proceedings of the 17th ACM conference on Information and knowledge management (CIKM '08), ACM, New York, NY, USA, pp. 509-518.         [ Links ]

16. Navigli, R. (2009). Word Sense Disambiguation: A survey. ACM Comput. Surv., Vol. 41, No. 2, Article 10.         [ Links ]

17. Sidorov, G. (2013). N-gramas sintácticos no-continuos. Polibits, Vol. 48, pp. 69-78.         [ Links ]

18. Sidorov, G. (2013). Syntactic Dependency Based N-grams in Rule Based Automatic English as Second Language Grammar Correction. International Journal of Computational Linguistics and Applications, Vol. 4, No. 2, pp. 169-188.         [ Links ]

19. Sidorov, G. (2014). Should Syntactic N-grams Contain Names of Syntactic Relations? International Journal of Computational Linguistics and Applications, Vol. 5, No. 1, pp. 139-158.         [ Links ]

20. Sidorov, G., Gelbukh, A., Gómez-Adorno, H., & Pinto, D. (2014). Soft Similarity and Soft Cosine Measure: Similarity of Features in Vector Space Model. Computación y Sistemas, Vol. 18, No. 3, pp. 491-504.         [ Links ]

21. Wigfield, A. (2004). Motivating Reading Comprehension: Concept-Oriented Reading Instruction.         [ Links ]

22. Wiley, D.A. (2000). Connecting learning objects to instructional design theory: A definition, a metaphor, and a taxonomy. In D.A. Wiley (ed.), The Instructional Use of Learning Objects. [online]         [ Links ].

23. Wolf, L., Hanani, Y., Bar, K., & Dershowitz, N. (2014). Joint word2vec Networks for Bilingual Semantic Representations. International Journal of Computational Linguistics and Applications, Vol. 5, No. 1, pp. 27-44.         [ Links ]

24. Zesch, T., Müller, C., & Gurevych, I. (2008). Extracting Lexical Semantic Knowledge from Wikipedia and Wiktionary. Proceedings of the 6th International Conference on Language Resources and Evaluation.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License