SciELO - Scientific Electronic Library Online

vol.18 issue4A Heuristic Approach for Blind Source Separation of Instant MixturesPeriodicity-Based Computation of Optical Flow author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Computación y Sistemas

Print version ISSN 1405-5546

Comp. y Sist. vol.18 n.4 México Oct./Dec. 2014 

Artículos regulares


Designing Minimal Sorting Networks Using a Bio-inspired Technique


Blanca C. López-Ramírez and Nareli Cruz-Cortés


Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City, Mexico.,


Article received on 12/04/2014.
Accepted on 03/06/2014.



Sorting Networks (SN) are efficient tools to sort an input data sequence. They are composed by a set of comparison-exchange operations called comparators. The comparators are a priori fixed for a determined input size. The comparators are independent of the input configuration. SN with a minimal number of comparators results in an optimal manner to sort data; it is a classical NP-hard problem studied for more than 50 years. In this paper we adapted a biological inspired heuristic called Artificial Immune System to evolve candidate sets of SN. Besides, a local strategy is proposed to consider the information regarding comparators and sequences to be ordered at a determined building stage. New optimal Sorting Networks designs for input sizes from 9 to 15 are presented.





1. Burnet, F. (1976). A modification of jerne's theory of antibody production using the concept of clonal selection. A Cancer Journal for Clinicians, Vol. 26, pp. 119-121.         [ Links ]

2. Choi, S.-S. & Moon, B. R. (2005). A graph-based lamarckian-baldwinian hybrid for the sorting network problem. IEEE Trans. Evolutionary Computation, Vol. 9, No. 1, pp. 105-114.         [ Links ]

3. Coelho, G. P. & Von Zuben, F. J. (2006). Omniainet: an immune-inspired approach for omni optimization. Proceedings of the 5th international conference on Artificial Immune Systems, ICARIS'06, Springer-Verlag, Berlin, Heidelberg, pp. 294-308.         [ Links ]

4. Cruz Cortés, N. & Coello Coello, C. A. (2003). Multiobjective optimization using ideas from the clonal selection principle. GECCO, pp. 158-170.         [ Links ]

5. Cutello, V. & Nicosia, G. (2002). An immunological approach to combinatorial optimization problems. Proceedings of the 8th Ibero-American Conference on AI: Advances in Artificial Intelligence, IBERAMIA 2002, Springer-Verlag, pp. 361-370.         [ Links ]

6. Dasgupta, D. (1999). Artificial Immune Systems and Their Applications. Springer, Verlag, Berlin.         [ Links ]

7. de Castro, L. N. & Timmis, J. (2002). Artificial immune systems - a new computational intelligence paradigm. Springer.         [ Links ]

8. de Castro, L. N. & Zuben, F. J. V. (2002). Learning and optimization using the clonal selection principle. IEEE Trans. on Evolutionary Computation, Vol. 6, No. 3, pp. 239-251.         [ Links ]

9. Harmer, P. K., Williams, P. D., Gunsch, G. H., & Lamont, G. B. (2002). An artificial immune system architecture for computer security applications. IEEE Transactions on Evolutionary Computation, Vol. 6, pp. 252-280.         [ Links ]

10. Hillis, W. D. (1990). Co-evolving parasites improve simulated evolution as an optimization procedure. Phys. D, Vol. 42, No. 1-3, pp. 228-234.         [ Links ]

11. Juillé, H. (1995). Evolution of non-deterministic incremental algorithms as a new approach for search in state spaces. Third European Conference on Artificial Life, pp. 27-32.         [ Links ]

12. Kim, J., Bentley, P. J., Aickelin, U., Greensmith, J., Tedesco, G., & Twycross, J. (2008). Immune system approaches to intrusion detection - a review. CoRR, Vol. abs/0804.1266.         [ Links ]

13. Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.         [ Links ]

14. O'Connor, D. G. & Nelson, R. J. (1962). Sorting system with n-line sorting switch. United States Patent number 3,029,413, Vol. 6.         [ Links ]

15. Valsalam, V. K. & Miikkulainen, R. (2011). Utilizing symmetry and evolutionary search to minimize sorting networks. Technical Report AITR-11-09, Department of Computer Sciences, The University of Texas at Austin, Austin, TX.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License